This paper proposes to apply a microfluidic chip combining DSC, DTA, and PCR-like functions for studying synthesis and selection of precursors of the genetic code carriers at hydrothermal conditions including those in natural high frequency fields (such as magnetosphere emission, atmospherics, auroras and lightings).
Heat transfer fluids (HTFs) are critical in numerous industrial processes, enabling efficient heat exchange and precise temperature control. HTF degradation, primarily from thermal cracking and oxidation, negatively impacts system performance, reducing fluid lifespan and increasing operational costs, thus necessitating regular monitoring and proactive management. This review assesses optimal sampling frequencies for organic and synthetic HTFs, considering degradation mechanisms, relevant analytical parameters, and the economic advantages of proactive monitoring. The objective of this review is to examine HTF degradation mechanisms, compare organic and synthetic fluid properties and their impact on sampling frequency, and discuss strategies for optimising system performance and extending fluid life through effective HTF condition management. The article highlights the importance of fluid management, including appropriate fluid selection, to optimise system and fluid health, which is crucial for maximising their lifespans, ensuring safe operation, and minimising costs.
This document outlines the advancements in AI- accelerated frame generation utilizing Neural Processing Units (NPU) in mobile devices. The integration of NPU technology enhances the processing efficiency of mobile graphics, enabling real-time frame generation that significantly improves video and image quality. By leveraging specialized hardware designed for AI computations, the system reduces latency and optimizes power consumption, making it ideal for demanding applications such as gaming and augmented reality. This paper discusses the underlying architecture of NPUs, their role in accelerating frame generation, and the potential impacts on user experience in mobile environments. The findings illustrate how NPU-driven solutions can transform mobile graphics, offering a more immersive and responsive experience while efficiently managing resources.
This paper presents a numerical method for solving a nonlinear age-structured population model based on a set of piecewise constant orthogonal functions. The block-pulse functions (BPFs) method is applied to determine the numerical solution of a non-classic type of partial differential equation with an integral boundary condition. BPFs duo to the simple structure can efficiently approximate the solution of systems with local or non-local boundary conditions. Numerical results reveal the accuracy of the proposed method even for the long term simulations.
In this study, a computational fluid dynamics (CFD) model is developed for a radio frequency (RF) plasma system designed for powder spheroidization. The electric field is generated analytically by solving the RF coil system, and then the resulting equations are implemented as user-defined functions (UDF) to the CFD model. UDF codes were created and defined in the Fluent program to generate RF plasma. Electromagnetic fields and fluid flow have been modelled in numerical analysis studies, and temperature and velocity distributions were obtained. The effect of this plasma environment on titanium particle temperature is investigated using various particle-feeding gas flow rates. As a result, it is observed that an optimal powder-feeding rate could be determined. It is seen that high particle velocities prevent the attainment of the necessary temperature for melting, while low velocities may cause the temperature to exceed the boiling point. These results conclude that the feeding gas flow rate could be determined for a specific powder size range to obtain the powder temperatures within the melting and boiling temperatures.
The heat extraction from the conventional channels under two-phase flow boiling conditions with water as the coolant is investigated numerically in this work. The numerical investigation was carried out by using ANSYS Fluent 2022R1 commercial software by selecting the Rensselaer Polytechnic Institute (RPI) wall heat flux partitioning approach by employing the Eulerian-Eulerian two-phase model. A three-dimensional computational domain was used for the simulation to understand the fluid boiling inside the conventional channel under steady state conditions, focusing on the effect of aspect ratio (AR) on the vapor volume fraction. The simulations were performed for a constant mass flux of 150.46 kg/m2-s with the heat flux value ranging from 10-100 kW/m2 and at the inlet subcooled temperatures of 303K, 313K and 323K. The temperature of the channel bottom surface and the heat transfer coefficient (HTC) obtained numerically were compared with the experimental results and it was found that the results matched well. The volume of vapor fraction increased with the increase in heat flux for all values of inlet subcooled temperature considered in this study for all the test sections. At low inlet subcooled temperature, the volume of vapor fraction decreased with an increase in AR at all heat fluxes. However, there was no observable trend at higher heat flux and high inlet subcooled temperature.
Copyright © by EnPress Publisher. All rights reserved.