This article explores the properties of Fibonacci sequences and their widespread applications.
Disaster Risk Management benefits from innovative techniques including AI and Multi Sensor Fusion. The Firefguard Approach uses such technologies to improve the Wildfire Management works in Saxony, Eastern Germany by supporting standing efforts in Early Warning, Disaster Response and Monitoring. Unmanned Aerial Systems (UAS) play a vital role in providing real-time information via a 5G network to a central information management system that delivers geospatial information to response teams. This study highlights the potential of combining UAS, AI, geospatial solutions and existing data for real-time wildfire monitoring and risk assessment systems.
One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.
This research underscores the importance of enhancing the early detection of diabetic retinopathy and glaucoma, two prominent culprits behind vision loss. Typically, retinal diseases lurk without symptoms until they inflict severe vision impairment, underscoring the critical need for early identification. The research is centered on the potential of leveraging fundus images, which offer invaluable insights by analyzing various attributes of retinal blood vessels, such as their length, width, tortuosity, and branching patterns. The conventional practice of manually segmenting retinal vessels by medical professionals is both intricate and time-consuming, demanding specialized expertise. This approach, reliant on pathologists, grapples with limitations related to scalability and accessibility. To surmount these challenges, the research introduces an automated solution employing computer vision. It conducts an evaluation of diverse retinal vessel segmentation and classification methods, including machine learning, filtering-based, and model-based techniques. Robust performance assessments, involving metrics like the true positive rate, true negative rate, and accuracy, facilitate a comprehensive comparison of these methodologies. The ultimate goal of this research is to create more efficient and accessible diagnostic tools, consequently enhancing the early detection of eye diseases through automated retinal vessel segmentation and classification. This endeavor combines the capabilities of computer vision and deep learning to pioneer new benchmarks in the realm of biomedical imaging, thereby addressing the pressing issues surrounding eye disease diagnosis.
Inflammation of the lungs, called pneumonia, is a disease characterized by inflammation of the air sacs that interfere with the exchange of oxygen and carbon dioxide. It is caused by a variety of infectious organisms, including viruses, bacteria, fungus, and parasites. Pneumonia is more common in people who have pre-existing lung diseases or compromised immune systems, and it primarily affects small children and the elderly. Diagnosis of pneumonia can be difficult, especially when relying on medical imaging, because symptoms may not be immediately apparent. Convolutional neural networks (CNNs) have recently shown potential in medical imaging applications. A CNN-based deep learning model is being built as part of ongoing research to aid in the detection of pneumonia using chest X-ray images. The dataset used for training and evaluation includes images of people with normal lung conditions as well as photos of people with pneumonia. Various preprocessing procedures, such as data augmentation, normalization, and scaling, were used to improve the accuracy of pneumonia diagnosis and extract significant features. In this study, a framework for deep learning with four pre-trained CNN models—InceptionNet, ResNet, VGG16, and DenseNet—was used. To take use of its key advantages, transfer learning utilizing DenseNet was used. During training, the loss function was minimized using the Adam optimizer. The suggested approach seeks to improve early diagnosis and enable fast intervention for pneumonia cases by leveraging the advantages of several CNN models. The outcomes show that CNN-based deep learning models may successfully diagnose pneumonia in chest X-ray pictures.
COVID was initially detected in Wuhan City, Hubei Province, People's Republic of China, in late 2019, as reported by researchers. Subsequently, it rapidly disseminated to numerous nations at the beginning of 2020, ultimately manifested as a pandemic with worldwide prevalence. Regarded as one of the most severe pandemics in documented human history, this outbreak resulted in deaths and infection over a quite millions of individuals globally. Due to its airborne nature, the coronavirus can be transmitted through actions such as coughing, sneezing, talking, and similar activities. Enclosed spaces lacking sufficient airflow are more likely to facilitate the spread of air borne diseases. Wearing a face mask that can provide protection against airborne pollutants, considered as Standard Operation Procedures (SOPS) for COVID-19. It is crucial to monitor the implementation of preventive measures both within and outside the building or workplace in order to prevent the transmission of COVID-19. The main objective of this project is to develop a face mask and social distance detector. You Only Learn One Representation (YOLOR) was implemented as a most advanced end-to-end target identification approach to develop the proposed system. An online available facemask dataset was utilized. The developed system can track individuals wearing masks in real time and can also identify and highlight persons with a rectangular box if their social distance is violated. This proposed interactive framework enables constant monitoring both internally and externally, thereby enhancing the capacity to identify offenders and ensure the safety of all individuals involved.
Copyright © by EnPress Publisher. All rights reserved.