This document outlines the advancements in AI- accelerated frame generation utilizing Neural Processing Units (NPU) in mobile devices. The integration of NPU technology enhances the processing efficiency of mobile graphics, enabling real-time frame generation that significantly improves video and image quality. By leveraging specialized hardware designed for AI computations, the system reduces latency and optimizes power consumption, making it ideal for demanding applications such as gaming and augmented reality. This paper discusses the underlying architecture of NPUs, their role in accelerating frame generation, and the potential impacts on user experience in mobile environments. The findings illustrate how NPU-driven solutions can transform mobile graphics, offering a more immersive and responsive experience while efficiently managing resources.
By carrying out a laboratory experiment, the influence of priming methods, including ZnSO4, BSN, and hydropriming was evaluated on the seed germination of hybrid AS71 corn. Then, the main and interaction effects of the priming methods, planting dates, and weed interference levels were surveyed on the vegetative growth traits, yield, and yield components of corn in a field experiment. Based on the lab experiment, although the maximum germination percentage (100%) was observed in the treated plots by hydropriming 22 h after treatment (HAT), the greatest seedling vigor index (122.99) was recorded with treated seeds by ZnSO4 (0.03 mg L–1) at 8 HAT. The greatest emergence index was observed in the treated plots by hydropriming on both planting dates of June 1 and 11. The interaction of planting dates and weed interference levels revealed that the highest emergence index (14%–17%) occurred in the weed-free plots on both planting dates. BSN recorded the greatest corn 1000-grain weight that was significantly higher than the control plots by 28%. Furthermore, BSN enhanced the corn grain yield compared with the control plots by 63% and 24.9% on the planting dates of June 1 and 11, respectively. BSN, as a nutri-priming approach, by displaying the highest positive effects in boosting the corn grain yield in both weedy and weed-free plots as well as both planting dates, could be a recommendable option for growers to improve the crop yield production.
The study evaluated 33 accessions of groundnut in the field, consisting of 23 landraces from Nasarawa communities in Nigeria and 10 inbred lines. Assessment entailed the determination of plant survivorship, yield related parameters and pathological indices while genetic diversity study was undertaken using SSR and RAPD molecular markers. Data analysis was done on the Minitab 17.0 software. Significant variability was noted in all traits except in pod sizes, seed sizes and % infected seeds. About 33.3% of the accessions had a survival rate of ≥ 70.0% where 9/10 Inbred lines were found with overall yield (kg/ha) ranging from 4.0 ± 1.6 in Akwashiki-Doma to 516.8 ± 46.9 kg/ha in Samnut 24 × ICGV–91328. Five accessions (15.5%) had pathological indices of zero indicating no traces of any disease of any type and they included one landrace called Agric-Dazhogwa and four Inbred lines: Samnut 25 × ICGV–91317, Samnut 26 × ICGV–19324, Samnut 26 × ICGV–91328 and Samnut 26 × ICGV–91319. Coefficients of yield determination R2 by survivorship and pathological index were 50.6% and 15%, respectively. A fit model was established (Yield in kg/ha = –146 − 7.94 × Pi + 5.88 × S). Susceptibility to diseases depends on the type of variety (χ2(32) = 127.67, P = 0.00). Yield was significantly affected by BNR@30 (F = 5.47, P = 0.025, P < 0.05) and DSV@60*RUST@60 interaction effect (F = 4.39, P = 0.044, P < 0.05). The similarity coefficient ranged from 28.57 to 100 in plant morphology. Four varieties had no amplified bands with SSR primers whereas amplified bands were present only in four landraces accessions using the RAPD primer. The dendrogram generated by molecular data gave three groups where genetic similarity ranged from 41.4 to 100.0. The Inbred lines were noted for their high survivorship, good yield and disease resistance. Samnut 24 × ICGV–91328, an inbred line, had the highest yield but was susceptible to diseases. Among the landraces, Agric-Musha, Bomboyi-Dugu and Agric-Dazhogwa were selected for high survivorship and disease resistance. The selected inbred lines and landraces are valuable genetic resources that may harbour useful traits for breeding and they should be presented to the growers based on their unique agronomic values. The highest yielding inbred lines should be improved for resistance to late leaf spot diseases while the outstanding landraces should be improved for yield.
Copyright © by EnPress Publisher. All rights reserved.