The pressing need to redefine the tourism industry’s relationship with nature and local communities has never been more critical. Ecotourism, as a paradigm of sustainable travel, holds transformative potential—not only for preserving our planet’s fragile ecosystems but also for fostering local cultural and economic development. In this context, the integration of circular economy principles offers innovative pathways to enhance sustainability across the tourism sector. The application of circular economy frameworks in tourism not only reduces environmental impact but also enhances economic viability by creating closed-loop systems. My interest in this topic stems from a personal conviction: Tourism should leave a positive mark, one that enriches rather than diminishes the destinations we visit. This study delves into how the hotel industry can align itself with ecotourism principles by embracing innovative, sustainable practices that minimize environmental impact while delivering authentic, high-quality experiences for travelers. Through the lens of green energy, resource optimization, and cultural integration, the research demonstrates that sustainability is both an ethical responsibility and a pathway to long-term competitiveness in tourism. By supporting local economies and protecting natural heritage, the industry can shift from being a passive observer of environmental degradation to a proactive steward of change. This work serves as a call to action for stakeholders: Our choices today will define the landscapes and cultural legacies available to future generations.
This paper employs a sample of Chinese A-share listed companies spanning from 2011 to 2022 to empirically investigate the influence of climate policy uncertainty on the corporate cost of debt, based on the theory of financial friction. We find that climate policy uncertainty significantly increases the corporate cost of debt, and the result is supported by robustness tests. To avoid biases arisen from endogeneity, this paper introduces an instrumental variable approach and propensity score matching method for verification. The endogeneity test results support the baseline regression results as well. Finally, this paper also discovers that financing constraints are the potential mechanism behind the impact of climate policy uncertainty on the corporate cost of debt.
The purpose of this work is to present the model of a Parabolic Trough Solar Collector (PTC) using the Finite Element Method to predict the thermal behavior of the working fluid along the collector receiver tube. The thermal efficiency is estimated based on the governing equations involved in the heat transfer processes. To validate the model results, a thermal simulation of the fluid was performed using Solidworks software. The maximum error obtained from the comparison of the modeling with the simulation was 7.6% at a flow rate of 1 L/min. According to the results obtained from the statistical errors, the method can effectively predict the fluid temperature at high flow rates. The developed model can be useful as a design tool, in the optimization of the time spent in the simulations generated by the software and in the minimization of the manufacturing costs related to Parabolic Trough Solar Collectors.
The intermittent flow cold storage heat exchanger is one of the most important components of the pulse tube expansion refrigerator based on the reverse Brayton cycle. In the experimental system, the volume and heat transfer of the helical tube play a decisive role in the stable operation of the whole experimental system. However, there are few studies on heat transfer in a helical tube under helium working medium and intermittent flow conditions. In this paper, a process and method for calculating the volume of a helical tube are proposed based on the gas vessel dynamics model. Subsequently, a three-dimensional simulation model of the helical tube was established to analyze the heat transfer process of cryogenic helium within the tube. The simulations revealed that the temperature of helium in the tube decreases to the wall temperature and does not change when the helical angle exceeds 720°. Moreover, within the mass flow rate range of 1.6 g/s to 3.2 g/s, an increase in the mass flow rate was found to enhance the heat transfer performance of the helical tube. This study provides a reference for the selection and application of a helical tube under intermittent flow conditions and also contributes to the experimental research of inter-wall heat exchanger and pulse tube expansion refrigerators.
Copyright © by EnPress Publisher. All rights reserved.