Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.
The electrospinning precursor solution was prepared by dissolving polyvinyl pyrrolidone as template, tetrabutyl titanate as titanium source, and acetic acid as inhibitor. The TiO2 nanofilms were prepared by precursor solution electrospinning and subsequent calcination. Thermal gravimetric analysis (TG), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize and analyze the samples. The influence of technological parameters on spinning fiber morphology was also studied. The results indicate that the TiO2 nanofibers morphology is good when the parameters are as follows: voltage 1.4×104 V,spinning distance 0.2 m,translational velocity 2.5×10-3 m·s-1, flow rate 3×10-4 m·s-1, and needle diameter 3×10-4 m. The diameter of the fibers is about 150 nm. With the 1×10-4 mol·L-1 methylene blue solution used as simulated degradation target, the degradation rate is 95.8% after 180 minutes.
Copyright © by EnPress Publisher. All rights reserved.