Based on the density-functional theory (DFT) combined with nonequilibrium Green’s function (NGF), this paper investigates the effects of either single aluminum (Al) or single phosphorus (P) atom substitutions at different edge positions of zigzag-edged silicene nanoribbons (ZGNRs) in the ferromagnetic state on the spin-dependent transport properties and spin thermoelectric effects. It has been found that the spin polarization at the Fermi level can reach 100% or –100% in the doped ZSiNRs. Meanwhile, the spin-up Seebeck effect (for –100% case) and spin-down Seebeck effect (for 100% case) are also enhanced. Moreover, the spin Seebeck coefficient is much larger than the corresponding charge Seebeck coefficient at a special doping position and electron energy. Therefore, the study shows that the Al or P doped ZSiNRs can be used to prepare the ideal thermospin devices.
Branched micro/nano Se was prepared by the redaction of L-Cys•HCl and H2SeO3 in hydrothermal method, as β-CD was used as soft template. The structures of products were characterized by SEM, TEM and XRD. Some important factors influencing the morphology of products were studied and discussed, including the amounts of soft template, the reaction temperature and the reaction time. The results showed that external causes had a potent effect on the morphology of micro/nano Se. The uniform branched micro/nano Se prepared under the optimal reaction condition was rhombohedral trigonal selenium t-Se0, but its crystallinity degree was low.
Copyright © by EnPress Publisher. All rights reserved.