Bagherian Khosroshahy M, Abdoli A, Panahi MM. Novel Feynman-Based Reversible and Fault-Tolerant Nano-communication Arithmetic Architecture Based on QCA Technology. SN Computer Science. 2021; 2(6). doi: 10.1007/s42979-021-00811-5
Danehdaran F, Angizi S, Bagherian Khosroshahy M, et al. A combined three and five inputs majority gate-based high performance coplanar full adder in quantum-dot cellular automata. International Journal of Information Technology. 2019; 13(3): 1165-1177. doi: 10.1007/s41870-019-00365-z
Ahmad F, John MU, Khosroshahy MB, et al. Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. International Journal of Information Technology. 2019; 11(3): 467-478. doi: 10.1007/s41870-019-00313-x
Landauer R. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development. 2000; 44(1.2): 261-269. doi: 10.1147/rd.441.0261
Bennett CH. Logical Reversibility of Computation. IBM Journal of Research and Development. 1973; 17(6): 525-532. doi: 10.1147/rd.176.0525
Panahi MM, Hashemipour O, Navi K. A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates. Integration. 2018; 62: 353-361. doi: 10.1016/j.vlsi.2018.04.014
Panahi MM, Hashemipour O, Navi K. A novel design of a multiplier using reversible ternary gates. IEEE.
Ahmed S, Naz SF. Notice of Violation of IEEE publication principles: design of cost efficient modular digital QCA circuits using optimized XOR Gate. IEEE Trans Circ Syst II Express Briefs. 2020.
Srivastava S, Sarkar S, Bhanja S. Estimation of Upper Bound of Power Dissipation in QCA Circuits. IEEE Transactions on Nanotechnology. 2009; 8(1): 116-127. doi: 10.1109/tnano.2008.2005408
Vankamamidi V, Ottavi M, Lombardi F. Two-Dimensional Schemes for Clocking/Timing of QCA Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2008; 27(1): 34-44. doi: 10.1109/tcad.2007.907020
Walus K, Dysart TJ, Jullien GA, et al. QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology. 2004; 3(1): 26-31. doi: 10.1109/tnano.2003.820815
Das JC, De D. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Frontiers of Information Technology & Electronic Engineering. 2016; 17(3): 224-236. doi: 10.1631/fitee.1500079
Thapliyal H, Ranganathan N. Reversible Logic-Based Concurrently Testable Latches for Molecular QCA. IEEE Transactions on Nanotechnology. 2010; 9(1): 62-69. doi: 10.1109/tnano.2009.2025038
Jain V, Sharnma DK, Gaur HM, et al. Comprehensive and comparative analysis of QCA-based circuit designs for next-generation computation. ACM Computing Surveys. 2023; 56(53): 1-36.
Sardinha LHB, Costa AMM, Neto OPV, et al. NanoRouter: A Quantum-dot Cellular Automata Design. IEEE Journal on Selected Areas in Communications. 2013; 31(12): 825-834. doi: 10.1109/jsac.2013.sup2.12130015
Yao F, Zein-Sabatto MS, Shao G, et al. Nanosensor Data Processor in Quantum-Dot Cellular Automata. Journal of Nanotechnology. 2014; 2014: 1-14. doi: 10.1155/2014/259869
Kamaraj A, Abinaya, Ramya S. Design of router using Reversible Logic in Quantum Cellular Automata. 2014 International Conference on Communication and Network Technologies. 2014. doi: 10.1109/cnt.2014.7062764
Mohaimeed AA, Rabee BH. Influence of Berry dye on some properties of nanocomposite (PVA/TiO2) films. Optical and Quantum Electronics. 2023; 55(3). doi: 10.1007/s11082-022-04523-9
Najm AAA, Alshrefi SM, Hadi ZL, et al. Synthesis of Novel [CdO(75%)/VO2(20%)/SiC(4%): p-Si] Heterojunction Composite Thin Films Decorated with Chlorophyll using Solvothermal-Laser Dual Technique for Solar Cell Applications. Silicon. 2024. doi: 10.1007/s12633-024-02997-8