MTS (Midwest Tungsten Serwise). Tungsten and Costs. Available online: https://www.tungsten.com/asset/61bbda640726d (accessed on 1 September 2024).
Yang X. Beneficiation studies of tungsten ores—A review. Minerals Engineering. 2018; 125: 111-119. doi: 10.1016/j.mineng.2018.06.001
Kumar R, Kariminejad A, Antonov M, et al. Progress in sustainable recycling and circular economy of tungsten carbide hard metal scraps for Industry 5.0 and onwards. Sustainability. 2023; 15(16): 12249. doi: 10.3390/su151612249
ITIA (International Tungsten Industry Association). Tungsten Processing. Available online: https://www.itia.info/tungstenprocessing.html (accessed on 1 September 2024).
Lin JC, Lin JY, Lee SL. Process for recovering tungsten carbide from cemented tungsten carbide scraps by selective electrolysis. Available online: https://patents.google.com/patent/US5384016A/en (accessed on 1 September 2024).
Katiyar PK, Randhawa NS, Hait J, et al. Anodic Dissolution behaviour of Tungsten Carbide scraps in ammoniacal media. Advanced Materials Research. 2013; 828: 11-20. doi: 10.4028/www.scientific.net/amr.828.11
Furberg A, Arvidsson R, Molander S. Environmental life cycle assessment of cemented carbide (WC-Co) production. Journal of Cleaner Production. 2019; 209: 1126-1138. doi: 10.1016/j.jclepro.2018.10.272
Lassner E, Schubert WD. Tungsten. Springer US; 1999. doi: 10.1007/978-1-4615-4907-9
Schubert WD, Zeiler B. Recycling of Tungsten. The Technology—History, State of the Art and Peculiarities. Available online: https://www.itia.info/assets/files/newsletters/Newsletter_2019_08.pdf (accessed on 1 September 2024).
Shedd KB. Tungsten recycling in the United States in 2000. USGS; 2005.
Xia X, Zhang G, Guan W, et al. A novel method for preparing tungsten and molybdenum peroxy complex solution and its application to tungsten-molybdenum separation. Hydrometallurgy. 2023; 215: 105974. doi: 10.1016/j.hydromet.2022.105974
Asher A, Borukhin L, Ruhr M. Applications of chemically recycled tungsten powder in heavy metal products. In: Tungsten and Refractory Metals. Princeton, Metal Powder Industries Federation; 1994. pp. 337-344.
Berrebi G, Dufresne P, Jacquier Y. Recycling of spent hydroprocessing catalysts: EURECAT technology. Resources, Conservation and Recycling. 1994; 10(1–2), 1-9. doi: 10.1016/0921-3449(94)90032-9
Kurylak W, Retegan T, Bru K, et al. State of the Art on the Recovery of Refractory Metals from Urban Mines. Available online: https://prometia.eu/wp-content/uploads/2020/12/MSP-REFRAM-D4.2-State-of-the-art-on-the-recovery-of-refractory-metals-from-urban-mines.pdf (accessed on 1 September 2024).
Tsagareishvili O, Chkhartishvili L, Matcharashvili M, et al. Boron and tungsten carbides based and related nanodispersed composites—A review. Characterization and Application of Nanomaterials. 2024; 7(2): 5454. doi: 10.24294/can.v7i2.5454
Murau PC. Dissolution of tungsten by hydrogen peroxide. Analytical Chemistry. 1961; 33(8): 1125-1126. doi: 10.1021/ac60176a021
Zhang W, Li J, Zhao Z, et al. Separation of W and Mo from their peroxoacids solutions by thermal decomposition. Transactions of Nonferrous Metals Society of China. 2016; 26(10): 2731-2737. doi: 10.1016/S1003-6326(16)64402-3
Kudo T, Okamoto H, Matsumoto K, et al. Peroxopolytungstic acids synthesized by direct reaction of tungsten or tungsten carbide with hydrogen peroxide. Inorganica Chimica Acta. 1986; 111(2): L27-L28. https://doi.org/10.1016/S0020-1693(00)84626-5
Kim H, Lee J, Sohn I, et al. Preparation of tungsten metal film by spin coating method. Korea-Australia Rheology Journal. 2002; 14(2): 71-76.
Tsuyumoto I. Facile synthesis of nanocrystalline hexagonal tungsten trioxide from metallic tungsten powder and hydrogen peroxide. Journal of the American Ceramic Society. 2017; 101(2): 509-514. doi: 10.1111/jace.15250
Jana RK, Kumar V, Saha AK, et al. Processing of tungsten alloy scrap for the recovery of tungsten metal. In: Proceedings of the National Seminar on Environmental & Waste Management in Metallurgical Industries. National Metallurgical Laboratory-Jamshedpur; 1996. pp. 94-98.
Masoudi A, Abbaszadeh H. Tungsten direct recovery from W-Cu alloy scrap by selective digestion via FeCl3 aqueous solution. American Journal of Materials Science and Engineering. 2013; 1(1): 1-5.
Das N, Chowdhury S, Purkayastha RND. Peroxo–tungstate(VI) complexes: Syntheses, characterization, reactivity, and DFT studies. Monatshefte für Chemie—Chemical Monthly. 2019; 150(7): 1255-1266. doi: 10.1007/s00706-019-02435-1
Dzyazko YS, Volfkovich YM, Chaban MO. Composites containing inorganic ion exchangers and graphene oxide: Hydrophilic–hydrophobic and sorption properties (Review). Cham, Springer; 2021. pp. 93-110.
Fu C, Foo C, Lee PS. One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochimica Acta. 2014; 117: 139-144. doi: 10.1016/j.electacta.2013.11.123
Chang X, Sun S, Dong L, et al. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica Acta. 2014; 129: 40-46. doi: 10.1016/j.electacta.2014.02.065
Chang X, Dong L, Yin Y, et al. A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances. 2013; 3(35): 15005. doi: 10.1039/c3ra41109e
An X, Yu JC, Wang Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. Journal of Materials Chemistry. 2012; 22(17): 8525. doi: 10.1039/c2jm16709c
Makatsaria S, Kekutia S, Markhulia J, et al. Magnetic properties of nanopowder h-BN doped with Fe and Fe3O4 nanoclusters. Nano Studies. 2021–2022; 21/2: 287-292. doi: 10.52340/ns.2022.08
Chkhartishvili L, Chedia R, Tsagareishvili O, et al. Preparation of neutron-capturing boron-containing nanosystems. In: Proceedings of the 9th International Conference and Exhibition on Advanced and Nano Materials; 2022; Victoria, IAEMM. pp. 1-15.
Chkhartishvili L, Makatsaria S, Gogolidze N, et al. Obtaining boron carbide and nitride matrix nanocomposites for neutron-shielding and therapy applications. Condensed Matter. 2023; 8(4): 92. doi: 10.3390/condmat8040092
Chkhartishvili L, Makatsaria S, Barbakadze N, et al. Synthesis of 2D-material(G,GO,rGO,h-BN)–magnetic(Fe,Fe3O4) nanocomposites. Nano Hybrids and Composites. 2024; 43: 23-37. doi: 10.4028/p-momlh1
Nadaraia L, Dundua T, Gamkrelidze N, et al. Graphite foil waste to graphene: New carbon precursors for synthesis of graphene and its oxides. Key Engineering Materials. 2021; 891: 68-74. doi: 10.4028/www.scientific.net/kem.891.68
Nadaraia L, Jalabadze N, Khundadze L, et al. Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide. Diamond and Related Materials. 2021; 114: 108319. doi: 10.1016/j.diamond.2021.108319
Dundua T. Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity. Nano Studies. 2021–2022; 21/22: 91-110. doi: 10.52340/ns.2022.06
Barbakadze N, Sarajishvili K, Chedia R, et al. Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors. Nanotechnology Perceptions. 2019; 15(3): 243-256. doi: 10.4024/N27BA19A.ntp.15.03
Mikeladze A, Tsagareishvili O, Chkhartishvili L, Chedia R. Obtaining of some boron-containing and related nanocrystalline systems from solutions and suspensions. Available online: https://www.researchgate.net/publication/334964450_Obtaining_of_Some_Boron-Containing_and_Related_Nanocrystalline_Systems_from_Solutions_and_Suspensions (accessed on 1 September 2024).
Chkhartishvili L, Mikeladze A, Tsagareishvili O, et al. Advanced boron carbide matrix nanocomposites obtained from liquid-charge: Focused review. Condensed Matter. 2023; 8(2): 37. doi: 10.3390/condmat8020037
Barbakadze NG, Tsitsishvili VG, Korkia TV, et al. Synthesis of graphene oxide and reduced graphene oxide from graphite foil industrial wastes. European Chemical Bulletin. 2019; 7(11-12): 329. doi: 10.17628/ecb.2018.7.329-333
Peng Y, Wang H, Zhao C, et al. Nanocrystalline WC-Co composite with ultrahigh hardness and toughness. Composites Part B: Engineering. 2020; 197: 108161. doi: 10.1016/j.compositesb.2020.108161
Shawgi N, Li S, Wang S, et al. Towards a large-scale production of boron carbide nano particles from poly (vinyl alcohol) and boric acid by a solid-state reaction-pyrolysis process (SRPP). Ceramics International. 2018; 44(1): 774-778. doi: 10.1016/j.ceramint.2017.09.246
Nabakhtiani G, Chkhartishvili L, Gigineishvili A, et al. Dekanosidze. Attenuation of gamma-radiation concomitant neutron-absorption in boron-tungsten composite shields. Nano Studies. 2013; 8: 259-266.
Evans BR, Lian J, Ji W. Evaluation of shielding performance for newly developed composite materials. Annals of Nuclear Energy. 2018; 116: 1-9. doi: 10.1016/j.anucene.2018.01.022
Chkhartishvili L. Boron-contained nanostructured materials for neutron-shields. Springer Science; 2018. pp. 133-154.
Singla G, Singh K, Pandey OP. Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technology. 2013; 237: 9-13. doi: 10.1016/j.powtec.2013.01.008
Wang Y, Long BF, Liu CY, et al. Evolution of reduction process from tungsten oxide to ultrafine tungsten powder via hydrogen. High Temperature Materials and Processes. 2021; 40(1): 171-177. doi: 10.1515/htmp-2021-0017
Dippel AC, Schneller T, Lehmann W, et al. Tungsten coatings by chemical solution deposition for ceramic electrodes in fluorescent tubes. Journal of Materials Chemistry. 2008; 18(29): 3501. doi: 10.1039/b802686f
Cao P, Cao JP, Cao JH. Boron carbide ceramic metallization preparation method. Available online: https://eureka.patsnap.com/pdfnew/ (accessed on 1 September 2024).
Ozer SC, Buyuk B, Tugrul AB, et al. Gamma and neutron shielding behavior of spark-plasma sintered boron carbide-tungsten based composites. Cham, Springer International Publishing; 2016. pp. 449-456.
Sugiyama S, Taimatsu H. Preparation of WC-WB-W2B composites from B4C-W-WC powders and their mechanical properties. Materials Transactions. 2002; 43(5): 1197-1201.
Martini F. Preparation and Characterization of Uranium and Tungsten Borides for Applications in the Nuclear Industry [PhD Theses]. Bangor University; 2023.