In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
The present study assessed the potential of sediment loading in Beteni, Lauruk, Andheri, and Harpan sub-watersheds of Phewa Lake and estimated the sediment yield in the year 2020. Morphometry, land use/land cover, geology, climate, and human and development factors of the sub-watersheds were studied to assess the potential of sediment loading in the sub-watersheds. SRTM DEM was used for the computation of morphometric parameters and land use/land cover maps were prepared by using Landsat imagery. Geology, rainfall data, census data, and road maps were collected from various secondary sources. The sediment yields of the four sub-watersheds in the year 2020 were estimated by measuring the sediment volume deposited in the sediment retention ponds at the outlet of each sub-watershed. Results indicated that Beteni had the highest potential for sediment loading, while Harpan had the lowest. Likewise, the sediment yields for Beteni, Lauruk, Andheri, and Harpan sub-watersheds in 2020 were estimated at 1,420.67 m3/km2/year, 2,280.14 m3/km2/year, 1,666.77 m3/km2/year, and 766.42 m3/km2/year, respectively. To reduce sedimentation in Phewa Lake, it is recommended to regularly maintain siltation dams and construct check dams along the drainage slopes, alongside other soil conservation measures and appropriate land use practices in the upstream areas of the sub-watersheds.
Copyright © by EnPress Publisher. All rights reserved.