This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
In the face of growing disruptions within the unconventional business environment, this study focuses on enhancing supply chain resilience through strategically reforming resources. It highlights the importance of understanding the dynamics and interactions of resources to tackle supply chain vulnerability (SCV) in the manufacturing sector. Employing the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methodology alongside an adapted Analytic Network Process (ANP), the research investigates supply chain vulnerabilities in Pakistan’s large-scale manufacturing (LSM) public sector firms. The DANP method, through expert questionnaires, helps validate a theoretical framework by assessing the interconnectedness of supply chain readiness dimensions and criteria. Findings underscore Resource Reformation (RR) as a critical dimension, with the positive restructuring of resources identified as pivotal for public sector firms to align their operations with disruption magnitudes, advocating for a detailed analysis of resource utilization.
The new cases of HIV/AIDS are being reported in Indonesia tend to increase. for over two decades, the Indonesian government has issued policies to reduce the number of cases through several ministries and local governments, but the results have not indicated signs of success. Therefore, this research aims to analyze the failure of prevention policies to improve policymaking in the future. It focuses on policy and institutional substance aspects using a qualitative design with documentary analysis approach. The results show that the policy failure in dealing with cases is caused by inappropriate rationalization, medicalization, and weak institutional and regulatory roles. Based on these descriptions, stakeholders are expected to emphasize a multi-perspective and holistic approach and rationalize policy objectives with institutional capacity. Moreover, the government needs to increase public and community involvement, strengthening the role of religious leaders and the media, and increase public literacy regarding HIV/AIDS.
This study employs logistic regression to investigate determinants influencing active living among elderly individuals, with “Active Living” (1 = Active, 0 = Inactive) as the dependent variable. Analysing data from 500 participants, findings reveal significant associations between active living and variables such as chronic conditions (OR = 0.29, p < 0.001), mental well-being (OR = 1.57, p < 0.001), social support (OR = 5.75, p < 0.001), access to parks/recreational facilities (OR = 2.59, p < 0.001), income levels (OR = 1.82, p = 0.003), cultural attitudes (OR = 2.72, p < 0.001), and self-efficacy (OR = 2.01, p < 0.001). These findings highlight the complex interplay of factors influencing active living among elderly populations. Recommendations include implementing targeted interventions to manage chronic conditions, enhance mental well-being, strengthen social networks, improve access to recreational spaces, provide economic support for fitness activities, promote positive cultural attitudes towards aging, and empower older adults through self-efficacy programs. Such interventions are crucial for promoting healthier aging and fostering sustained engagement in physical activity among older adults.
This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
Participation in the implementation of green values that are becoming a global norm often experiences challenges. In response with trends of social media use, a study of barriers to green product purchase intention among social media users is conducted. By descriptive qualitative approach, three keywords are employed, namely: (1) “barriers to green consumption”; (2) “barriers of purchase intention; and (3) “social media use and barriers to green consumption”. The findings reveal: (1) the study of barriers to green product purchase intention among social media users has been gaining importance for future research; (2) the potential future research area includes: (a) the level of belief in green products purchase intention that explains the rationalization of green consumption (green knowledge); and (b) the use of digital media through the role of social media in promoting green consumption (green promotion). The theoretical implication emphasizes contribution to the theory of sustainable marketing, namely barriers as dynamics of market interactivity that are capable of generating responsiveness leading to business competitiveness. While practical implication is shown in business efforts to transform challenges into opportunity.
Copyright © by EnPress Publisher. All rights reserved.