Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
Modernizing the Internet of Things in Islamic boarding schools is essential to eliminate backwardness and skills gaps. Santri must have cognitive, affective, psychomotor, and creative intelligence to be ready to enter the industrial and business world. The students’ need for information transparency can be resolved using technology. This is because the empowerment of the Internet of Things has become a separate part of Islamic boarding school activities with students who can connect in real-time. This research aims to analyze current conditions and stakeholder involvement regarding the application of the Internet of Things in innovative Islamic boarding school services in the era of disruption. The Descriptive Method and Individual Interest Matrix Analysis were used by involving 130 respondents from the internal environment of the Daarul Rahman Islamic boarding school and completing the questionnaire through FGD (Focus Group Discussion) with the leaders of the Daarul Rahman Islamic boarding school. The results show that the current condition of Islamic boarding schools is that most need to learn or understand IoT, even though they are enthusiastic about learning new things and flexible in accepting change. The challenges required in implementing IoT are financial investment, increasing human resources through training, and synergy between Islamic boarding school policy makers. Mutually supportive and solid conditions are required between foundations, school principals, and school committees to implement IoT at Daarul Rahman Islamic Boarding School. Collaboration with various parties is needed because the implementation of IoT cannot be done alone by Islamic boarding schools but with the support of various related parties.
The growth of mobile Internet has facilitated access to information by minimizing geographical barriers. For this reason, this paper forecasts the number of users, incomes, and traffic for operators with the most significant penetration in the mobile internet market in Colombia to analyze their market growth. For the forecast, the convolutional neural network (CNN) technique is used, combined with the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit (GRU) techniques. The CNN training data corresponds to the last twelve years. The results currently show a high concentration in the market since a company has a large part of the market; however, the forecasts show a decrease in its users and revenues and the growth of part of the competition. It is also concluded that the technique with the most precision in the forecasts is CNN-GRU.
In this research, we employed multivariate statistical methods to investigate the perspectives of small and medium-sized enterprises (SMEs) concerning the Extended Producer Responsibility (EPR) regulation and their apprehensions related to EPR compliance. The EPR regulation, which places the responsibility of waste management on producers, has significant financial and administrative implications, particularly for SMEs. A sample of 114 businesses was randomly selected, and the collected data underwent comprehensive analysis. Our findings highlight that a notable proportion of businesses (44.7%) possess knowledge of the EPR regulation’s provisions, whereas only a marginal fraction (1.8%) lacks sufficient familiarity. We also explored the interplay between opinions on the EPR regulation and concerns regarding its financial and administrative implications. Our results establish a significant correlation between EPR regulation opinions and concerns, with adverse opinions prominently influencing concerns, particularly regarding financial burdens and administrative workloads. These outcomes, derived from the application of multivariate statistical techniques, provide valuable insights for enhancing the synergy between environmental regulations and business practices. EPR regulation significantly affects SMEs in terms of financial, administrative, and legal obligations, thus our study highlights that policymakers may need to consider additional support mechanisms to alleviate the regulatory burden on SMEs, fostering a more effective and sustainable implementation of the EPR regulation.
While the International Civil Aviation Organization (ICAO) Council is sometimes criticized for the potential influence of political agendas on its decisions, while the International Court of Justice (ICJ) is criticized for its limited jurisdiction and dependence on the party’s willingness to accept the ICJ’s jurisdiction, a crucial concern is raised over the efficiency of the current Dispute Resolution Mechanisms (DRM) for aviation industry related disputes. Unravelling the compelling inquiry that hangs in the air: Just how efficient is the current aviation arbitration legal system? Is the efficiency of this system available to ad hoc arbitration1 or arbitral tribunals2? The authors aim to analyze the existing legal guidance to navigate the complex arbitration system. This article sheds light on precedent cases by the ICAO Council and the ICJ studying challenges, such as the lack of efficiency of the ICAO Council and the criticism of the Council’s ineffectiveness for being hampered by the political interests of Member States. As well as the ICJ as it may be a more powerful authority in resolving such disputes, it also faces multiple challenges including the lack of enforcement, jurisdiction issues, and political influence, which in return makes it unlikely for dispute parties to seek the ICAO or the ICJ for resolution of their disputes, instead parties have now mostly adopted arbitration clauses as their primary dispute resolution method under Air Services Agreements (ASAs) and other aviation related agreements. While ad hoc arbitration has shown effectiveness and success, its secrecy and confidentiality might result in inconsistency and the inability to develop a case law system. The authors note the urgent need for an arbitration institution3 under the United Nations (UN) umbrella specialized in air law and aviation technology disputes, with the power to issue an enforceable, legally binding ruling. The article also examines the realm of arbitration in the aerospace industry, analyzing legal resources, current aviation arbitration systems, centres, and platforms, and further analyzing case studies to assess the results of the efficiency of each Dispute Resolution Mechanism.
The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
Oil spills (OS) in waters can have major consequences for the ecosystem and adjacent natural resources. Therefore, recognizing the OS spread pattern is crucial for supporting decision-making in disaster management. On 31 March 2018, an OS occurred in Balikpapan Bay, Indonesia, due to a ship’s anchor rupturing a seafloor crude oil petroleum pipe. The purpose of this study is to investigate the propagation of crude OS using coupled three-dimensional (3D) model from DHI MIKE software and remote sensing data from Sentinel-1 SAR (Synthetic Aperture Radar). MIKE3 FM predicts and simulates the 3D sea circulation, while MIKE OS models the path of oil’s fate concentration. The OS model could identify the temporal and spatial distribution of OS concentration in subsurface layers. To validate the model, in situ observations were made of oil stranded on the shore. On 1 April 2018, at 21:50 UTC, Sentinel-1 SAR detected an OS on the sea surface covering 203.40 km2. The OS model measures 137.52 km2. Both methods resulted in a synergistic OS exposure of 314.23 km2. Wind dominantly influenced the OS propagation on the sea surface, as detected by the SAR image, while tidal currents primarily affected the oil movement within the subsurface simulated by the OS model. Thus, the two approaches underscored the importance of synergizing the DHI MIKE model with remote sensing data to comprehensively understand OS distribution in semi-enclosed waters like Balikpapan Bay detected by SAR.
Copyright © by EnPress Publisher. All rights reserved.