Journal Browser
Search
Analysis of the spatial distribution of multidimensional poverty in Colombia, an approach based on Moran’s index
Steveen Alexander González Bula
Dina Luz Jiménez Lobo
Miguel José Solano Cabarcas
Journal of Infrastructure Policy and Development 2025, 9(4); https://doi.org/10.24294/jipd11847
Submitted:25 Jul 2025
Accepted:12 Dec 2025
Published:25 Dec 2025
Abstract

This study examines the spatial distribution of socioeconomic conditions in Colombia, using Moran’s Index as a tool for spatial autocorrelation analysis. Key indicators related to education, health, infrastructure, access to basic services, employment, and housing conditions are addressed, allowing the identification of inequalities and structural barriers. The research reveals patterns of positive autocorrelation in several socioeconomic dimensions, suggesting a concentration of poverty and underdevelopment in certain geographic areas of the country. The results show that municipalities with more unfavorable conditions tend to cluster spatially, particularly in the northern, northwestern, western, eastern, and southern regions of the country, while the central areas exhibit better conditions. Permutation analyses are employed to validate the statistical significance of the findings, and LISA cluster maps highlight the regions with the highest concentration of poverty and social vulnerability. This work contributes to the literature on inequality and regional development in emerging economies, demonstrating that public policies should prioritize intervention in territories that exhibit significant spatial clustering of poverty. The methodology and findings provide a foundation for future studies on spatial correlation and economic planning in both local and international contexts.

References
1. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115. Portico. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
2. Anselin, L. (2020). Autocorrelación espacial global. Available online: https://geodacenter.github.io/workbook/5a_global_auto/lab5a.html?utm_source=.com (accessed on 12 April 2025).
3. ArcMap. (2021). Cómo funciona Autocorrelación espacial (I de Moran global). Available online: https://desktop.arcgis.com/es/arcmap/latest/tools/spatial-statistics-toolbox/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm?utm_source=.com (accessed on 30 May 2025)
4. Aronov, I. Z., Zharkova, A. A., Rybakova, A. M. (2024). Assessment of Export Effects Based on Chow Statistical Test Applied to Free Trade Agreements. Russian Foreign Economic Journal, 7, 50-67. Available online: https://ideas.repec.org//a/alq/rufejo/rfej_2024_07_50-67.html (accessed on 30 May 2025).
5. Bravo López, P. E. (2021). Autocorrelación espacial - Índices para determinar su presencia en datos geográficos: Breve revisión de la literatura. Universidad-Verdad, 78, 48–61. https://doi.org/10.33324/uv.v1i78.351
6. Celemín, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial: Importancia, estructura y aplicación. Revista Universitaria de Geografía, 18(1), 11-31. Available online: https://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S1852-42652009000100002&lng=es&nrm=iso&tlng=es (accessed on 21 July 2025).
7. Chen, Y. (2023). Spatial autocorrelation equation based on Moran’s index. Scientific Reports, 13(1), 19296. https://doi.org/10.1038/s41598-023-45947-x
8. Pina, J. C., Alves, L. S., Arroyo, L. H., et al. (2020). Using geo-spatial analysis for assessing the risk of hospital admissions due to community-acquired pneumonia in under-5 children and its association with socially vulnerable areas (Brazil). BMC Pediatrics, 20(1). https://doi.org/10.1186/s12887-020-02398-x
9. Encarnacion, R. H., Magnaye, D. C., & Castro, A. G. M. (2023). Spatial Analysis of Local Competitiveness: Relationship of Economic Dynamism of Cities and Municipalities in Major Regional Metropolitan Areas in the Philippines. Sustainability, 15(2), 950. https://doi.org/10.3390/su15020950
10. Escorcia Hernández, J. R., Torabi Moghadam, S., Lombardi, P. (2024). Urban sustainability in social housing environments: A spatial impact assessment in Bogotá, Colombia. Cities, 154, 105392. https://doi.org/10.1016/j.cities.2024.105392
11. Estrada, L., Moreno, S. L. (2013). Análisis espacial de la pobreza multidimensional en Colombia a partir del censo de población de 2005 (Revista IB 12677). Departamento Administrativo Nacional de Estadística-DANE. Available online: https://econpapers.repec.org/paper/col000482/012677.htm (accessed on 12 April 2025).
12. Feitosa, F. O., Batista, P., & Marques, J. L. (2023). How to assess spatial injustice: Distinguishing housing spatial inequalities through housing choice. Cities, 140, 104422. https://doi.org/10.1016/j.cities.2023.104422
13. Gai, A., Ernan, R., Fauzi, A., et al. (2025). Poverty Reduction Through Adaptive Social Protection and Spatial Poverty Model in Labuan Bajo, Indonesia’s National Strategic Tourism Areas. Sustainability, 17(2), 555. https://doi.org/10.3390/su17020555
14. García-Burgos, J., Miquelajauregui, Y., Vega, E., et al. (2022). Exploring the Spatial Distribution of Air Pollution and Its Association with Socioeconomic Status Indicators in Mexico City. Sustainability, 14(22), 15320. https://doi.org/10.3390/su142215320
15. Garrocho, C. (2016). Ciencias sociales espacialmente integradas: La tendencia de Economía, Sociedad y Territorio. Economía, sociedad y territorio, 16(50). Available online: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-84212016000100001&lng=es&nrm=iso&tlng=es (accessed on 21 July 2025)
16. Daya Sagar, B. S., Cheng, Q., McKinley, J., et al. (Eds.). (2023). Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. https://doi.org/10.1007/978-3-030-85040-1
17. Spatial Autocorrelation. (2020). Spatial Analysis Methods and Practice: Describe–Explore–Explain through GIS. Cambridge University Press. pp. 207–274. https://doi.org/10.1017/9781108614528.005
18. Gutiérrez, J. A., Cortés, N., Montaña, C. J. (2020). La Pobreza Multidimensional y su relación con el espacio: Caso de estudio para Colombia. Revista Visión Contable, 21. https://doi.org/10.24142/rvc.n21a4
19. He, X., Mai, X., Shen, G. (2020). Poverty and Physical Geographic Factors: An Empirical Analysis of Sichuan Province Using the GWR Model. Sustainability, 13(1), 100. https://doi.org/10.3390/su13010100
20. Isazade, V., Qasimi, A. B., Dong, P., et al. (2023). Integration of Moran’s I, geographically weighted regression (GWR), and ordinary least square (OLS) models in spatiotemporal modeling of COVID-19 outbreak in Qom and Mazandaran Provinces, Iran. Modeling Earth Systems and Environment, 9(4), 3923-3937. https://doi.org/10.1007/s40808-023-01729-y
21. Jiao, S., Li, X., Yu, J., et al. (2024). Multi-Scale Analysis of Surface Building Density and Land Subsidence Using a Combination of Wavelet Transform and Spatial Autocorrelation in the Plains of Beijing. Sustainability, 16(7), 2801. https://doi.org/10.3390/su16072801
22. Kaztman, R. (2003). La dimensión espacial en las políticas de superación de la pobreza urbana. CEPAL. Available online: https://repositorio.cepal.org/entities/publication/a7d56f79-23fa-4ef5-8493-3901927984ae (accessed on 12 April 2025)
23. Kibuuka, D., Mpofu, C., Neave, P., et al. (2021). A Spatial Analysis of Tuberculosis Related Mortality in South Africa. International Journal of Environmental Research and Public Health, 18(22). https://doi.org/10.3390/ijerph182211865
24. Laverde Rojas, H., Gómez Ríos, J. J. (1969). Medición de la pobreza multidimensional en América Latina a través de modelos estructurales. Cooperativismo & Desarrollo, 23(106). https://doi.org/10.16925/co.v23i106.1130
25. Lei, K., Hou, Q., Duan, Y., et al. (2024). The Spatiotemporal Matching Relationship between Metro Networks and Urban Population from an Evolutionary Perspective: Passive Adaptation or Active Guidance? Land, 13(8), 1200. https://doi.org/10.3390/land13081200
26. Li, G., Jiao, Y., Li, J., et al. (2022). Spatiotemporal Evolution and Influential Factors of Rural Poverty in Poverty-Stricken Areas of Guizhou Province: Implications for Consolidating the Achievements of Poverty Alleviation. ISPRS International Journal of Geo-Information, 11(11), 546. https://doi.org/10.3390/ijgi11110546
27. Li, T., Cao, X., Qiu, M., et al. (2020). Exploring the Spatial Determinants of Rural Poverty in the Interprovincial Border Areas of the Loess Plateau in China: A Village-Level Analysis Using Geographically Weighted Regression. ISPRS International Journal of Geo-Information, 9(6), 345. https://doi.org/10.3390/ijgi9060345
28. Liu, M., Ge, Y., Hu, S., et al. (2023). The Spatial Effects of Regional Poverty: Spatial Dependence, Spatial Heterogeneity and Scale Effects. ISPRS International Journal of Geo-Information, 12(12), 501. https://doi.org/10.3390/ijgi12120501
29. Maniragaba, V. N., Atuhaire, L. K., & Rutayisire, P. C. (2023). Analysis of Spatiotemporal Patterns of Undernutrition among Children below Five Years of Age in Uganda. Sustainability, 15(20), 14872. https://doi.org/10.3390/su152014872
30. Medina, E. J., Sierra, L. F., Domínguez, A. R. (2021). Perspectiva multidimensional de la pobreza en los hogares colombianos. Sociedad y Economía, 44. https://doi.org/10.25100/sye.v0i44.10734
31. Muñetón, G., Manrique, L. C. (2023). Predicting Multidimensional Poverty with Machine Learning Algorithms: An Open Data Source Approach Using Spatial Data. Social Sciences, 12(5). https://doi.org/10.3390/socsci12050296
32. Muñeton, G., Vanegas, J. G. (2014). Análisis espacial de la pobreza en Antioquia, Colombia. Equidad y Desarrollo, 21, 29. https://doi.org/10.19052/ed.2366
33. Núñez Medina, G., Medina Pérez, P. C. (2024). Infant Mortality in Mexico in 2020: A Spatial Analysis of Multiple Causes. Apuntes Del Cenes, 43(77), 179–210. https://doi.org/10.19053/uptc.01203053.v43.n77.2024.16100
34. Ocampo, J. A. (1992). Reforma del Estado y desarrollo económico y social en Colombia. Análisis Político. Available online: https://revistas.unal.edu.co/index.php/anpol/article/view/75094 (accessed on 30 May 2025)
35. Pérez, G. (2005). Dimensión espacial de la pobreza en Colombia. Banco de la República de Colombia - Centro de Estudios Económicos Regionales (CEER). Available online: https://www.banrep.gov.co/sites/default/files/publicaciones/archivos/DTSER-54.pdf (accessed on 30 May 2025)
36. Qi, W., Deng, Y., Fu, B. (2022). Rural attraction: The spatial pattern and driving factors of China’s rural in-migration. Journal of Rural Studies, 93, 461-470. https://doi.org/10.1016/j.jrurstud.2019.03.008
37. Ramírez, J. M., Bedoya, J. G., Díaz, Y. (2016). Geografía económica, descentralización y pobreza multidimensional en Colombia (FEDESARROLLO). Available online: http://www.repository.fedesarrollo.org.co/handle/11445/2894 (accessed on 12 April 2025)
38. Rodríguez, A. (2024). Análisis espacial de la segregación residencial y el turismo, a partir de características socioeconómicas y socioculturales, en la ciudad de Cusco, Perú. Available online: http://hdl.handle.net/20.500.12404/29483 (accessed on 21 July 2025)
39. Rodríguez, L. A., Marín, D., Piñeros-Jiménez, J. G., et al. (2023). Intraurban Geographic and Socioeconomic Inequalities of Mortality in Four Cities in Colombia. International Journal of Environmental Research and Public Health, 20(2). https://doi.org/10.3390/ijerph20020992
40. Sánchez, P., Gómez, R. (2021). Indicadores espaciales y no espaciales: Un enfoque complementario para el análisis cuantitativo de la segregación residencial en la ciudad de Managua. Urbano (Concepción), 24(43), 52-61. https://doi.org/10.22320/07183607.2021.24.43.05
41. Saputra, W., Giyarsih, S. R., Muhidin, S. (2023). Spatial analysis of slum areas on the riverbanks of Palembang City using the Anselin Local Moran’s I analysis. GeoJournal, 88(6), 6523–6538. https://doi.org/10.1007/s10708-023-10983-7
42. Siabato, W., Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 1–22. https://doi.org/10.15446/rcdg.v28n1.76919
43. Tian, J., Sui, C., Zeng, S., et al. (2024). Spatial Differentiation Characteristics, Driving Mechanisms, and Governance Strategies of Rural Poverty in Eastern Tibet. Land, 13(7), 978. https://doi.org/10.3390/land13070978
44. Weladee, S., Sanit, P. (2023). The Spatial Distribution of Taxi Stations in Bangkok. Sustainability, 15(19). https://doi.org/10.3390/su151914080
45. Proceedings of the 7th International Conference on Economic Management and Green Development. (2024). In X. Li, C. Yuan, & J. Kent (Eds.), Applied Economics and Policy Studies. Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0523-8
46. Zhang, C., Lv, W., Zhang, P., et al. (2023). Multidimensional spatial autocorrelation analysis and it’s application based on improved Moran’s I. Earth Science Informatics, 16(4), 3355-3368. https://doi.org/10.1007/s12145-023-01090-9
47. Zhang, Y., Liu, D. (2023). Assessment of Socio-Economic Adaptability to Ageing in Resource-Based Cities and Its Obstacle Factor. Sustainability, 15(17), 12981. https://doi.org/10.3390/su151712981
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP