Agamuthu P, Khidzir KM, Hamid FS. Drivers of sustainable waste management in Asia. Waste Management & Research 2009; 27(7): 625–633. doi: 10.1177/0734242X09103191
Siracusa V, Blanco I. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers
Nazareth MC, Marques MRC, Pinheiro LM, et al. Key issues for bio-based, biodegradable and compostable plastics governance. Journal of Environmental Management 2022; 322: 116074. doi: 10.1016/j.jenvman.2022.116074
Japu C, de Ilarduya AM, Alla A, Muñoz-Guerra S. Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid. Polymer 2014; 55(10): 2294–2304. doi: 10.1016/j.polymer.2014.03.018
Lackner M. Bioplastics-biobased plastics as renewable and/or biodegradable alternatives to petroplastics. In: Othmer K (editor). Kirk-Othmer Encyclopedia of Chemical Technology, 6th ed. John Wiley & Sons; 2015.
Nakajima H, Dijkstra P, Loos K. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 2017;
Volanti M, Cespi D, Passarini F, et al. Terephthalic acid from renewable sources: Early-stage sustainability analysis of a bio-PET precursor. Green Chemistry 2019; 21(4): 885–896. doi: 10.1039/C8GC03666G
Toyota Tsusho Corporation. Toyota Tsusho expanding its new plant-derived plastic brand GLOBIO®-Decision made to use GLOBIO for suntory natural mineral water bottles. Available online: http://www.toyota-tsusho.com/english/press/detail/ 130326_001840.html (
Gironi F, Piemonte V. Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy 2011; 30(3): 459–468. doi: 10.1002/ep.10490
Lucchetti C, De Simone G, Galli G, Tuccimei P. Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles. Radiation Measurements 2016; 84: 1–8. doi: 10.1016/j.radmeas.2015.11.001
Ciriminna R, Pagliaro M. Biodegradable and compostable plastics: A critical perspective on the dawn of their global adoption. ChemistryOpen 2020; 9(1): 8–13. doi: 10.1002/open.201900272
Al Hosni AS, Pittman JK, Robson GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management 2019; 97: 105–114. doi: 10.1016/j.wasman.2019.07.042
Accinelli C, Abbas HK, Bruno V, et al. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Management 2020; 113: 312–318. doi: 10.1016/j.wasman.2020.06.011
Scarfato P, Di Maio L, Incarnato L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science 2015. doi: 10.1002/app.42597
Özen İ, Bozoklu G, Dalgıçdir C, et al. Improvement in gas permeability of biaxially stretched PET films blended with high barrier polymers: The role of chemistry and processing conditions. European Polymer Journal 2010; 46(2): 226–237. doi: 10.1016/j.eurp
Galdi MR, Incarnato L. Influence of composition on structure and barrier properties of active PET films for food packaging applications. Packaging Technology and Science 2011; 24(2): 89–102. doi: 10.1002/pts.917
Rosaria Galdi M, Incarnato L. Production and characterization of active transparent pet films for oxygen sensitive foods packaging. AIP Conference Proceedings 2010; 1255(1): 199–201. doi: 10.1063/1.3455577
Dey A, Neogi S. Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology 2019; 90: 26–34. doi: 10.1016/j.tifs.2019.05.013
Gaikwad KK, Singh S, Lee YS. Oxygen scavenging films in food packaging. Environmental Chemistry Letters 2018; 16: 523–538. doi: 10.1007/s10311-018-0705-z
Wyrwa J, Barska A. Innovations in the food packaging market: Active packaging. European Food Research and Technology 2017; 243: 1681–1692. doi: 10.1007/s00217-017-2878-2
Di Maio L, Scarfato P, Galdi MR, Incarnato L. Development and oxygen scavenging performance of three‐layer active PET films for food packaging. Journal of Applied Polymer Science 2015; 132(7). doi: 10.1002/app.41465
Cecchi T, Passamonti P, Cecchi P. Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chemistry 2010; 120(3): 730–735. doi: 10.1016/j.foodchem.2009.11.001
Angelo Miranda M, Jabarin SA, Coleman M. Modification of poly(ethylene terephthalate) (PET) using linoleic acid for oxygen barrier improvement: Impact of processing methods. Journal of Applied Polymer Science 2017; 134(38): 45023. doi: 10.1002/app.45023