In this study, ‘Xinli No. 3’, ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ were used as rootstock, and ‘Jinchun No. 39’ cucumber was used as scion to study the effects of different rootstock on the yield and quality of grafted cucumber, and to select high quality rootstock suitable for cucumber grafting. Different rootstock affected the survival rate, phenology, the height of plant, stem diameter, growth potential, yield and quality of cucumber grafting. Among them, the survival rate of ‘Shenli rootstock’ grafted cucumber is the highest, and the growth of ‘Shengzhen No. 1’ grafted cucumber is relatively the strongest. There was no significant difference in fruit tuber, melon edge, thorn color and pulp crispness between self-rooted seedling (CK) and each rootstock grafting combination. The average yield of ‘Xinli No. 3’ grafted cucumber plot was not significantly different from that of self-rooted seedlings (CK). The length of ‘Shenli rootstock’ and ‘Shengli rootstock’ grafted cucumber was significantly higher than that of self-rooted seedlings (CK), and the length of ‘Shengzhen No. 1’ Grafted Cucumber was significantly higher than that of self-rooted seedlings (CK). The contents of vitamin C and soluble protein of ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ grafted cucumber were significantly higher than those of self-rooted seedlings (CK), and the contents of soluble sugar were lower than those of self-rooted seedlings (CK). Therefore, ‘Shengzhen No. 1’ and ‘Jinchun No. 39’ have strong compatibility with cucumber. As rootstocks, the grafted cucumber plants not only have strong growth potential and high yield, but also significantly increase the content of soluble protein and vitamin C.
One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Banana macropropagation in a thermal chamber is an economical technology, effective as a phytosanitary cleaning method, and efficient to enhance seedling production. The objective of this work was to evaluate the effects of corm size (CS) and benzylaminopurine (BAP) on plantain cv. Barraganete seedling proliferation in two propagation environments (PE). The treatments consisted of two levels of BAP (with and without BAP), three CS (2 ± 0.5, 4 ± 0.5 and 6 ± 0.5 kg) and two PE (thermal chamber and raised bed). The variables evaluated were sprouting time (days), multiplication rate (MT) per unit (seedlings per corm) and area (seedlings per m2). Sprouting time was significantly influenced (p < 0.05) by the PE, where the thermal chamber advanced shoot emergence by 12 days, with respect to the raised bed. MT of seedlings per corm and m2, were significantly influenced (p < 0.05) by BAP × AP and TC × AP interactions, where the highest seedling production per corm occurred inside thermal chamber with BAP and 6 ± 0.5 kg corms, while seedling production per m2 was higher with 2 ± 0.5 kg corms under the same thermal chamber conditions and with BAP. The main effects results reported that with BAP there were 30 and 31% increases in MT per corm and per m2, respectively, relative to the treatment without BAP. Within the thermal chamber the MT per corm and per m2 increased by 44% relative to the raised bed. Regarding the effect of CS, larger corms achieved higher individual MT, while smaller corms achieved higher MT per area. The use of a thermal chamber and BAP is recommended for mass production of banana seedlings through macropropagation.
Copyright © by EnPress Publisher. All rights reserved.