Journal Browser
Search
Twisted-Tape inserts: A method for improving heat transfer efficiency in heat exchangers
Prashant B Dehankar
Thermal Science and Engineering 2025, 8(3); https://doi.org/10.24294/tse9828
Submitted:23 Oct 2024
Accepted:29 Oct 2024
Published:26 Dec 2025
Abstract

Heat transfer augmentation procedures, such as Heat Transfer Enhancement and Intensification, are commonly used in heat exchanger systems to enhance thermal performance by decreasing thermal resistance and increasing convective heat transfer rates. Swirl-flow devices, such as coiled tubes, twisted-tape inserts, and other geometric alterations, are commonly used to create secondary flow and improve the efficiency of heat transfer. This study aimed to explore the performance of a heat exchanger by comparing its performance with and without the use of twisted-tape inserts. The setup consisted of a copper inner tube measuring 13 mm in inner diameter and 15 mm in outer diameter, together with an outer pipe measuring 23 mm in inner diameter and 25 mm in outer diameter. Mild steel twisted tapes with dimensions of 2 mm thickness, 1.2 cm width, and twist ratios of 4.3 and 7.2 were utilised. The findings indicated that the heat transfer coefficient was 192.99 W/m² °C when twisted-tape inserts were used, while it was 276.40 W/m² °C without any inserts. The experimental results closely aligned with the theoretical assumptions, demonstrating a substantial enhancement in heat transfer performance by the utilisation of twisted-tape inserts. The study provides evidence that the utilisation of twisted-tape inserts resulted in a nearly two times increase in the heat transfer coefficient, hence demonstrating their efficacy in augmenting heat transfer.


© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP