This study evaluates the effectiveness of Indonesia’s defense industry policy from 2018 to 2023, focusing on PT Pindad, a pivotal state-owned defense enterprise. Using a Balanced Scorecard (BSC) framework, the study assesses PT Pindad’s performance across financial, customer, internal process, and learning and growth perspectives. The findings reveal strengths in financial stability (Current Ratio at 115.57% in 2023) and customer satisfaction, but challenges in Return on Investment (ROI), which fell from 6% in 2022 to 5.46% in 2023, signaling a need for further internal improvements. A mediation analysis using Shape-Restricted Regression indicates that Research and Development (R&D) serves as a crucial mediator, enhancing the impact of strategic alliances and technology transfer on PT Pindad’s self-reliance, with R&D showing a positive coefficient of β = 0.53 (p < 0.01). The systematic literature review complements these findings, underscoring the role of technology transfer, human capital development, and strategic partnerships as essential components for strengthening PT Pindad’s self-reliance and global competitiveness. Recommendations are made to enhance policy effectiveness by fostering robust technology transfer mechanisms, increasing investment in human capital, and expanding strategic partnerships. This research contributes to the literature on defense industry policies by providing a comprehensive evaluation framework that informs future policy decisions.
Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
As social growth and educational concepts continue to evolve, college libraries, as hubs of cultural innovation and inheritance, are crucial in advancing the practice of great traditional culture aesthetic teaching. Based on the special status and resource advantages of college libraries, this paper explores the paths and approaches colleges libraries take in advancing the practice of aesthetic education of excellent traditional culture by combining the connotation and characteristics of excellent traditional culture. With a study of the research and case studies that concentrate on the planning of cultural events, the development of collection resources, and the use of digital innovation, it suggests a workable path. The goal is to give university libraries theoretical direction and useful references so they can carry out the aesthetic education of superior traditional culture.
Copyright © by EnPress Publisher. All rights reserved.