The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
Management and efficiency have a fundamental impact on the performance of public hospitals, as well as on their philanthropic mission. Various studies have shown that the financial weaknesses of these entities affect the planning, setting of goals and objectives, monitoring, evaluation and feedback necessary to improve health systems and guarantee accessibility as an inalienable right. This study aims to analyze the management and efficiency of third-level and/or high-complexity hospitals in Colombia, through a statistical model that uses financial analysis and key performance indicators (KPIs) such as ROA, ROE and EBITDA. A non-experimental cross-sectional design is used, with an analytical-synthetic, documentary, exploratory and descriptive approach. The results show financial deficiencies in the hospitals evaluated; hence it is recommended to make adjustments in the operating cycle to increase efficiency rates. In addition, the use of the KPIs ROA and ROE under adjusted models is suggested for a more precise analysis of the financial ratios, since these adequately explain the variability of each indicator and are appropriate to evaluate hospital management and efficiency, but not in EBITDA ratio, hence the latter is not recommended to evaluate hospital efficiency reliably. This study provides relevant information for public health policy makers, hospital managers and researchers, in order to promote the efficiency and improvement of health services.
Copyright © by EnPress Publisher. All rights reserved.