Immeasurable basic and applied information has been evolved on all important floricultural crops through large-scale worldwide research on interdisciplinary aspects. The quantum and quality of work done on Chrysanthemum, among all other ornamentals, are par excellence. Conscientious attempt has been made to collect the whole multidisciplinary experimental results achieved world over. Despite remarkable achievements in knowledge and technology, a major part of present experimental research on chrysanthemum is largely a routine repeat of work. Assessment of past and present work is now significant for preparing target-oriented future research resolutions. This will help to secure the favored results within a justifiable period.
The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
Copyright © by EnPress Publisher. All rights reserved.