Journal Browser
Search
Literature assessment and futuristic research approach on floriculture: Chrysanthemum
Subodh Kumar Datta
Trends in Horticulture 2025, 8(2); https://doi.org/10.24294/th11758
Submitted:19 May 2024
Accepted:01 Jul 2025
Published:26 Dec 2025
Abstract

Immeasurable basic and applied information has been evolved on all important floricultural crops through large-scale worldwide research on interdisciplinary aspects. The quantum and quality of work done on Chrysanthemum, among all other ornamentals, are par excellence. Conscientious attempt has been made to collect the whole multidisciplinary experimental results achieved world over. Despite remarkable achievements in knowledge and technology, a major part of present experimental research on chrysanthemum is largely a routine repeat of work. Assessment of past and present work is now significant for preparing target-oriented future research resolutions. This will help to secure the favored results within a justifiable period.

References
1. Carter CD. In Larson RA (editor). Introduction to Floriculture. Academic Press; New York, NY, USA; 1980.
2. Hemsley WB. The history of the chrysanthemum: The principle modifications of the chrysanthemum. Gardeners Chronicle. 1889; 6: 586–587.
3. Datta SK. Chrysanthemum. NBRI Bulletin. 1996; 1: 1–26.
4. Heywood VH, Humphris CJ. Anthmideae systematic review. In Heywood VH, Hartome JB, Turner BL (editors). The Biology and Chemistry of Compositae. Academic; New York, NY, USA; 1977. pp. 851–898.
5. Kitamura S. Dendranthema at Nipponanthemum. Acta Phytotaxonomica et Geobotanica. 1978; 29: 165–170. doi: 10.18942/bunruichiri.KJ00001078257
6. Anderson YO. Reclamation of the genus Chrysanthemum L. HortScience. 1987; 22(2): 313. doi: 10.21273/HORTSCI.22.2.313
7. Datta SK. Induced Mutagenesis in Chrysanthemum. In Penna S, Jain SM (editors). Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer; 2023. doi: 10.1007/978-981-16-9720-3_19
8. Sabine J. XXIV. Observations on the Chrysanthemum Indicum of Linnaeus. Transactions of the Linnean Society of London. 1822; 13(2): 561–578. doi: 10.1111/j.1095-8339.1821.tb00071.x
9. Niwa T. Chrysanthemums of Japan. Published by The Sanseido Company; 1936.
10. Anonymous. Chrysanthemums. Bull Minist Agric Fish Food London. 1961; 2: 6.
11. Nazeer MA, Khoshoo, TN. Cytological evolution of garden chrysanthemum. Current Science. 1982; 51: 583–585.
12. Dai SL, Wang WK, Huang JP. Advance of researches on phylogeny of Dendranthema and origin of chrysanthemum. Acta Scientiarum Naturalium Universitatis Pekinensis. 2002; 24: 230–234.
13. Zhao HE, Liu ZH, Hu X, et al. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genetic Resources and Crop Evolution. 2009; 56(7): 937–946. doi: 10.1007/s10722-009-9412-8
14. Datta S.K. Chrysanthemum morifolium Ramat. Unique genetic materials for breeding. Science & Culture. 2013; 79: 307–313.
15. Hao DC, Song Y, Xiao P, et al. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. Frontiers in Plant Science. 2022; 13: 973197. doi: 10.3389/fpls.2022.973197
16. POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Available online: https://powo.science.kew.org/Retrieved (accessed on 11 August 2024).
17. Machine J, Scopes N. Chrysanthemum Year-Round Blooming. Blandford Press; 1978.
18. Kyle F. Chrysanthemum. A Complete Guide to Their Culture. Nard. Lock & Co., Ltd.; 1952.
19. Kher MA. Photoperiodic response in Chrysanthemum. Plant Science. 1969; 1: 200–206.
20. Joiner JN, Smith TC. Effect of nitrogen and potassium levels on the growth and flowering responses and foliar composition on Chrysanthemum morifolium. Proceedings of the American Society for Horticultural Science. 1962; 81: 571–580.
21. Datta SK, Gupta VN. Year round cultivation of garden chrysanthemum (Chrysanthemum morifolium Ramat.) through photoperiodic response. Science & Culture. 2012; 78(1,2): 71–77.
22. Chen F, Chen S, Guo W, et al. Salt tolerance identification of three species of chrysanthemums. Acta Horticulturae. 2003; (618): 299–305. doi: 10.17660/actahortic.2003.618.34
23. Datta SK. Indian Floriculture: Role of CSIR. Regency Publications. A Division of Astral International(P) Ltd.; 2015.
24. Belarmino MM, Gabon CF. Low-cost micropropagation of chrysanthemum (Chrysanthemum morifolium) through tissue culture. Philippine Journal of Science. 1999; 128(2): 125–143.
25. Hahn EJ, Lee YB, Ahn CH. A new method on mass-production of micropropagated chrysanthemum plants using microponic system in plant factory. In: Proceedings of the International Symposium on Plant Production in Closed Ecosystems; 26–29 August 1996; Narita, Japan. pp. 527–532. doi: 10.17660/actahortic.1996.440.92
26. Earle ED, Langhans RW. Propagation of Chrysanthemum in vitro. I. Multiple Plantlets from Shoot Tips and the Establishment of Tissue Cultures1,2. Journal of the American Society for Horticultural Science. 1974; 99(2): 128–131. doi: 10.21273/jashs.99.2.128
27. Eisa EA, Tilly-Mándy A, Honfi P, et al. Chrysanthemum: A Comprehensive Review on Recent Developments on In vitro Regeneration. Biology. 2022; 11: 1774. doi: 10.3390/biology11121774
28. Kalia R. Effect of different concentrations of auxins on the regeneration of Chrysanthemum morifolium plantlets. International journal of technical research and applications. 2015; 3(6): 106–107.
29. Kumar A, Kumar VA. High-frequency in vitro propagation in Chrysanthemum maseimum. Indian Journal of Horticulture. 1995; 37–38.
30. Langhans RW. Chrysanthemum micropropagation. New York’s food and life Sciences. 1974; 7: 3–7.
31. Sultana Na J, Shyamali S, Kazumi H. High Frequency Shoot Regeneration from Petal Explants of Chrysanthemum morifolium Ramat. in vitro. Pakistan Journal of Biological Sciences. 2007; 10(19): 3356–3361. doi: 10.3923/pjbs.2007.3356.3361
32. Prasad RN, Sharma AK, Chaturvedi HC. Clonal multiplication of Chrysanthemum morifolium ‘Otome Zakura’ in long-term culture. Bangladesh Journal of Botany. 1983; 12(1): 96–102.
33. Wang X, Zeng L, Peng Y, et al. Studies on Rapid-Micropropagation Technology of Different Chrysanthemum Cultivars. Journal of Shanghai Jiao Tong University (Science). 2013; 31: 19–29.
34. D’hont K. Postharvest treatment of chrysanthemum. Acta Horticulturae. 1989; (261): 305–308. doi: 10.17660/actahortic.1989.261.39
35. Lee JS, Song CY, Wang HJ, et al. Effect of postharvest treatment and preservative solutions on flower quality and vase life of cut chrysanthemums. Journal of the Korean Society for Horticultural Science. 1996; 37: 136–140.
36. Singh K, Arora JS, Bhattacharjee SK. Postharvest management of cut flowers. AICRP on Floriculture, Technical Bulletin No. 10. Chrysanthemum. 2001; 30–33.
37. Sharma G, Srivastava R. Postharvest life of cut chrysanthemum cultivars in relation to chemicals, wrapping material and storage conditions. Tropical Agricultural Research. 2015; 26(1): 195. doi: 10.4038/tar.v26i1.8084
38. Bajpay A. Effects of Holding Solutions and Gamma Radiation on Flower Longevity of Chrysanthemum (Dendranthema grandiflora) cv. Little Pink. International Journal of Pure & Applied Bioscience. 2018; 6(1): 1133–1138. doi: 10.18782/2320-7051.5896
39. Singh BP. Chrysanthemum virus diseases. Plant Science. 1970; 2: 83–84.
40. Sharma P, Bhattacharjee SK. Plant protection in ornamental crops. In: AICRP on Floriculture, Technical Bulletin No. 19. Chrysanthemum. ICAR. 2002; pp. 45–51.
41. Verma N, Ram R, Hallan V, et al. Production of Cucumber mosaic virus-free chrysanthemums by meristem tip culture. Crop Protection. 2004; 23(5): 469–473. doi: 10.1016/j.cropro.2003.08.021
42. Wang Y, Zhang W, Hong C, et al. Chrysanthemum (Chrysanthemum morifolium) CmHRE2-like negatively regulates the resistance of chrysanthemum to the aphid (Macrosiphoniella sanborni). BMC Plant Biology. 2024; 24(1). doi: 10.1186/s12870-024-04758-6
43. Nazeer MA. Karyological studies in two species of Chrysanthemum L. Cell & Chrom Newsletter. 1981; 4(2): 33–35.
44. Dowrick GJ. The chromosomes of chrysanthemum I. Heredity. 1952; 6: 365–376. doi: 10.1038/hdy.1952.45
45. Dowrick GJ. Chromosome numbers and the origin and nature of sports in the garden chrysanthemum. National Chrysanthemum Society. 1958; 60–69.
46. Endo N. The chromosome survey of cultivated chrysanthemums, Chrysanthemum morifolium Ramat. I. On the chromosome numbers of cultivated chrysanthemum (part I). The Japanese Society for Horticultural Science. 1969; 38(4): 343–349. doi: 10.2503/jjshs.38.343
47. Endo N. The chromosome survey of cultivated chrysanthemums, Chrysanthemum morifolium Ramat. I. On the chromosome numbers of cultivated chrysanthemum (part II). The Japanese Society for Horticultural Science. 1969; 38(4): 343–349. doi: 10.2503/jjshs.38.343
48. Ichikawa S, Yamakawa F, Tatsuno T. Variation in somatic chromosome number in radiation-induced mutants in chrysanthemum morifolium Hemsl. Cv. Yellow Delaware and Delaware. Radiation Biology 1970; 10: 557–562. doi: 10.1016/S0033-7560(70)80065-5
49. Cuyacot AR, Won SY, Park SK, et al. The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Scientia Horticulturae. 2016; 198: 438–444. doi: 10.1016/j.scienta.2015.12.025
50. Cuyacot AR, Lim KB, Kim HH, et al. Chromosomal characterization based on repetitive DNA distribution in a tetraploid cytotype of Chrysanthemum zawadskii. Horticulture, Environment, and Biotechnology. 2017; 58(5): 488–494. doi: 10.1007/s13580-017-0280-4
51. Song A, Su J, Wang H, et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nature Communications. 2023; 14(1): 2021. doi: 10.1038/s41467-023-37730-3
52. Kawase K, Tsukamoto Y. Studies on flower color in Chrysanthemum morifolium Ramat. Journal of the Japanese Society for Horticultural Science. 1976; 45(1): 65–75. doi: 10.2503/jjshs.45.65
53. Chakrabarty D, Chatterjee J, Datta SK. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regulation. 2007; 53(2): 107–115. doi: 10.1007/s10725-007-9208-9
54. Shahrajabian MH, Sun W, Zandi, et al. A review of chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Applied Ecology and Environmental Research. 2019; 17(6): 13355–13369. doi: 10.15666/aeer/1706_1335513369
55. Ma YP, Chen MM, Wei JX, et al. Origin of Chrysanthemum cultivars d Evidence from nuclear low- copy LFY gene sequences. Biochemical Systematics and Ecology. 2016; 65: 129e136. doi: 10.1016/j.bse.2016.02.010
56. Kim SH, Kim YS, Jo YD, et al. Sucrose and methyl jasmonate modulate the expression of anthocyanin biosynthesis genes and increase the frequency of flower-color mutants in chrysanthemum. Scientia Horticulturae. 2019; 256: 108602. doi: 10.1016/j.scienta.2019.108602
57. Shao Y, Sun Y, Li D, et al. Chrysanthemum indicum L.: A Comprehensive Review of its Botany, Phytochemistry and Pharmacology. The American Journal of Chinese Medicine. 2020; 48(04): 871–897. doi: 10.1142/s0192415x20500421
58. Baek J, Park S, Lee J, et al. The complete chloroplast genome of Chrysanthemum zawadskii Herbich (Asteraceae) isolated in Korea. Mitochondrial DNA Part B. 2021; 6(7): 1956–1958. doi: 10.1080/23802359.2021.1934148
59. Hongmei S, Wenrui H, Dianyun H, et al. Complete chloroplast genome sequence of Dendranthema zawadskii Herbich. Mitochondrial DNA Part B. 2021; 6(8): 2117–2119. doi: 10.1080/23802359.2021.1942261
60. Hossain Z, Mandal AKA, Shukla R, et al. NaCl stress—its chromotoxic effects and antioxidant behavior in roots of Chrysanthemum morifolium Ramat. Plant Science. 2004; 166(1): 215–220. doi: 10.1016/j.plantsci.2003.09.009
61. Hossain Z, Mandal AKA, Datta SK, et al. Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Functional Plant Biology. 2006; 33(1): 91–101. doi: 10.1071/fp05149
62. Hossain Z, Mandal AKA, Datta SK, et al. Development of NaCl‐Tolerant Strain in Chrysanthemum morifolium Ramat. through in vitro Mutagenesis. Plant Biology. 2006; 8(4): 450–461. doi: 10.1055/s-2006-923951
63. Hossain Z, Mandal AKA, Datta SK, et al. Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. Journal of Biotechnology. 2007; 129(4): 658–667. doi: 10.1016/j.jbiotec.2007.02.020
64. Datta SK. Technology Package for Induced Mutagenesis. Journal of Biology and Nature. 2023; 15(1): 70–88. doi: 10.56557/joban/2023/v15i18077
65. Abd El-Twab MH, Kondo K. Fluorescence in situ hybridization and genomic in situ hybridization to identify the parental genomes in the intergeneric hybrid between Chrysanthemum japonicum and Nipponanthemum nipponicum. Chromosome Botany. 2006; 1(1): 7–11. doi: 10.3199/iscb.1.7
66. Cheng X, Chen S, Chen F, et al. Creating novel chrysanthemum germplasm via interspecific hybridization and backcrossing. Euphytica. 2010; 177(1): 45–53. doi: 10.1007/s10681-010-0248-2
67. Kher MA. Improving chrysanthemum by exploring genetic variability. In: Proceedings of the National Conference on Chrysanthemum; 4–5 December 1977; Lucknow, India. pp. 7–10.
68. Su J, Jiang J, Zhang F, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research. 2019; 6(1). doi: 10.1038/s41438-019-0193-8
69. Su JS, Jia DW, Wang SY, et al. A 60-year review and outlook on genetic breeding of chrysanthemums in China. Acta Horticulturae Sinica. 2022; 10: 2143–2162.
70. Aida R, Ohira K, Tanaka Y, et al. Efficient Transgene Expression in Chrysanthemum, Dendranthema grandiflorum (Ramat.) Kitamura, by Using the Promoter of a Gene for Chrysanthemum Chlorophyll-a/b-binding Protein. Breeding Science. 2004; 54(1): 51–58. doi: 10.1270/jsbbs.54.51
71. Benetka V, Pavingerová D. Phenotypic differences in transgenic plants of chrysanthemum. Plant Breeding. 1995; 114(2): 169–173. doi: 10.1111/j.1439-0523.1995.tb00784.x
72. Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of Flower Color in Florist’s Chrysanthemum: Production of a White–Flowering Variety Through Molecular Genetics. Bio/Technology. 1994; 12(3): 268–271. doi: 10.1038/nbt0394-268
73. Takatsu Y, Nishizawa Y, Hibi T, et al. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Scientia Horticulturae. 1999; 82: 113–123 doi: 10.1016/S0304-4238(99)00034-5
74. Ling Q, Zhang S, Li X, et al. Cloning and functional verification of the CmHSP17.9 gene from chrysanthemum. PLoS ONE. 2024; 19(5):e0301721. doi: 10.1371/journal.pone.0301721
75. Teixeira, da Silva J. Ornamental chrysanthemum: improvement by biotechnology. Plant Cell, Tissue and Organ Culture. 2004; 79: 1–18 doi: 10.1023/B:TICU.0000049444.67329.b9
76. Rout G, Das P. Recent trends in the biotechnology of Chrysanthemum: A critical review. Scientia Horticulturae. 1997; 69: 239–257 doi: 10.1016/S0304-4238(97)00008-3
77. Mandal AKA, Datta SK. Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biologia plantarum. 2005; 49(1): 29–33. doi: 10.1007/s10535-005-0033-6
78. Lema-Rumińska J, Sliwinska E. Evaluation of the genetic stability of plants obtained via somatic embryogenesis in Chrysanthemum×grandiflorum (Ramat./Kitam.). Acta Scientiarum Polonorum-hortorum Cultu. 2015; 14: 131–139.
79. Shinoyama H, Nomura Y, Tsuchiya T, et al. A Simple and Efficient Method for Somatic Embryogenesis and Plant Regeneration from Leaves of Chrysanthemum [Dendranthema*grandiflorum (Ramat.) Kitamura]. Plant Biotechnology. 2004; 21(1): 25–33. doi: 10.5511/plantbiotechnology.21.25
80. Justine AK, Kaur N, Savita, et al. Biotechnological interventions in banana: current knowledge and future prospects. Heliyon. 2022; 8(11): e11636. doi: 10.1016/j.heliyon.2022.e11636
81. Monalisa K, Justine AK, Kar S, et al. Biotechnological advances on Plumbago zeylanica L.: an important medicinal plant. Vegetos. Published online December 2, 2024. doi: 10.1007/s42535-024-01107-8
82. Nguyen TK, Dang M, Doan TTM, et al. Utilizing Deep Neural Networks for Chrysanthemum Leaf and Flower Feature Recognition. AgriEngineering. 2024; 6: 1133–1149. doi: 10.3390/ agriengineering6020065 83. Datta SK. Cytological interpretation of induced somatic flower colour mutation in garden
chrysanthemum. In: Plant Cytogenetics in India (edited by Sibdas Ghosh). University of Calcutta; 1995. pp. 107–114.
84. Datta K, Datta KS. Palynological interpretation of gamma ray and colchicine induced mutation in chrysanthemum cultivars. Israel Journal of Plant Sciences. 1998; 46(3): 199–207. doi: 10.1080/07929978.1998.10676728
85. Datta SK, Shome U. Micromorphological studies of original and mutant cultivars of ornamentals. Feddes Repertorium. 1994; 105(3–4): 167–174. doi: 10.1002/fedr.19941050307
86. Chatterjee J, Mandal AK, Ranade SA, et al. Estimation of genetic diversity of four Chrysanthemum Mini cultivars using RAPD, Pakistan Journal of Biological Sciences. 2005; 8: 546–549. doi: 10.3923/pjbs.2005.546.549
87. Chatterjee J, Mandal AK, Ranade SA, et al. Intravarietal variation of miniature Chrysanthemum cultivars using Random Amplified Polymorphic DNA. Horticulture, Environment, and Biotechnology. 2006; 47: 192–192.
88. Chatterjee J, Mandal AKA, Ranade SA, et al. Molecular systematics in Chrysanthemum×grandiflorum (Ramat.) Kitamura. Scientia Horticulturae. 2006; 110(4): 373–378. doi: 10.1016/j.scienta.2006.09.004
89. Sehrawat SK, Kumar R, Dahiya DS, et al. DNA fingerprinting of chrysanthemum cultivars using RAPDs. Acta Horticulturae. 2003; (624): 479–485. doi: 10.17660/actahortic.2003.624.66
90. Wolff K, Peters-van Rijn J. Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity. 1993; 71(4): 335–341. doi: 10.1038/hdy.1993.147
91. Datta SK. Dehydration of Flowers and Foliage and Floral Craft. Pointer Publishers; 2015.
92. Hossain Z, Kalam Azad Mandal A, Kumar Datta S, et al. Decline in ascorbate peroxidase activity – A prerequisite factor for tepal senescence in gladiolus. Journal of Plant Physiology. 2006; 163(2): 186–194. doi: 10.1016/j.jplph.2005.03.004
93. Datta SK. Success story of induced mutagenesis for development of new ornamental varieties. In: Bioremediation, Biodiversity and Bioavailability 6 (Special Issue I). Global Science Books; 2012. pp. 15–26.
94. Datta SK. Induced mutations: technological advancement for development of new ornamental varieties. Nucleus. 2020; 63: 119–129. doi: 10.1007/s13237-020-00310-7
95. Su J, Jiang J, Zhang F, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research. 2019; 6(1). doi: 10.1038/s41438-019-0193-8
96. Datta SK. Characterization and utilization of DNA based markers for selective breeding of ornamentals: Hippeastrum/Amaryllis. The Nucleus. 2023; 66(2): 205–214. doi: 10.1007/s13237-023-00419-5
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP