Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
Global energy agencies and commissions report a sharp increase in energy demand based on commercial, industrial, and residential activities. At this point, we need energy-efficient and high-performance systems to maintain a sustainable environment. More than 30% of the generated electricity has been consumed by HVAC-R units, and heat exchangers are the main components affecting the overall performance. This study combines experimental measurements, numerical investigations, and ANN-aided optimization studies to determine the optimal operating conditions of an industrial shell and tube heat exchanger system. The cold/hot stream temperature level is varied between 10 ℃ and 50 ℃ during the experiments and numerical investigations. Furthermore, the flow rates are altered in a range of 50–500 L/h to investigate the thermal and hydraulic performance under laminar and turbulent regime conditions. The experimental and numerical results indicate that U-tube bundles dominantly affect the total pumping power; therefore, the energy consumption experienced at the cold side is about ten times greater the one at the hot side. Once the required data sets are gathered via the experiments and numerical investigations, ANN-aided stochastic optimization algorithms detected the C10H50 scenario as the optimal operating case when the cold and hot stream flow rates are at 100 L/h and 500 L/h, respectively.
Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
The study aims to investigate and analyse the social media, precisely the Instagram activity of several hotels in the city of Yogyakarta, Indonesia. Having been the second most popular destination besides Bali, it is mainly dominated by domestic tourism. Although several governmental institutions exist, the study focuses on the hotel’s activity only. The main purpose was to find, that after the classification of the posts, whether there is a more positive effect of one as opposed to the other type of posts. In addition, it was also important to see if with the time advancing positive effect of likes and comments appear and the relation of hashtags, likes and comments. Data was collected between 1st of January 2023. and 15th of July 2024. The first step was to collect posts done by the suppliers and then the posts were classified. Also, the number of hashtags used were collected. Second step was to collect the response from the demand side by gathering their likes and comments. Data then was analysed with SPSS 24 and JASP program. Results show that while there is no significance on increasing likes and comments with the months advancing, but in terms of the type of the posts there is. Promotional posts with other suppliers tend to bring a lot more comments and likes than self-promotional posts. This study’s main purpose to analyse through social media posts to enhance online networking by local suppliers promoting each other’s products.
Copyright © by EnPress Publisher. All rights reserved.