This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
This paper aims to systematically analyze the current state of plastic waste legal supervision in China and to propose a vision for future governance frameworks. In recent years, along with the vigorous rise of emerging industries such as the express delivery industry and takeaway services, the consumption of plastic products has increased sharply. This trend has triggered profound reflection and high vigilance on the issue of plastic waste supervision. This trend has triggered profound reflection and acute vigilance regarding the regulation of plastic waste. Although the Chinese government has initiated multiple regulatory measures and achieved certain outcomes, from a macroscopic perspective, the issue of plastic waste pollution remains grave, and the relevant legal and regulatory system presents a complex situation with limited enforcement efficacy. Hence, it is exceptionally urgent and significant to deeply explore and formulate legislative strategies aimed at alleviating and regulating plastic waste pollution. This paper is dedicated to systematically analyzing the current state of plastic waste legal supervision from both international and domestic dimensions, and meticulously outlining the regulatory framework for plastic waste governance in China. Through the application of legal norm research methods, this paper dissects the flaws and challenges existing in the current governance mechanisms and further conducts a comparative study of the successful practices in this field in developed countries like the United States, with the intention of drawing valuable experiences. On this basis, this paper not only offers a forward-looking outlook on China’s future legislative tendencies in plastic waste pollution but also innovatively proposes a series of new insights and recommendations. These explorations aim to provide a more solid theoretical foundation and practical guidance for the governance approach to plastic waste pollution in China, promote the improvement and enhancement of the enforcement effectiveness of environmental regulations, and thereby effectively confront the global challenge of plastic pollution.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
The objective of this research was to evaluate the unit rates of MSW generation in Cumba in the years 2016 and 2022. The calculations were based on the weights of the MSW disposed in the dump located 5 km from the city of Cumba since 2012. The GPC, physical composition, density, humidity were determined in the years 2016 and 2022, studied according to the methodology and group classification of Peruvian regulations. The results show that 5.45 Tn/day−1 are generated in 2016, 4.37 Tn/day−1 in 2022; according to its physical composition, 82% RO, 14% MICVC and 4% MISVC in 2016; 77% RO, 16% MICVC, 7% MISVC in 2022; density 137.90 kg/m−3 in 2016 and 172.69 kg/m−3 in 2022; humidity 67.67% in 2016 and 63.43% in 2022. It was also found that in 100.00% there is no solid waste treatment; Everything generated in homes, businesses and streets is evacuated to the final disposal site, which is a dump. In 2022, Cumba acquired 10 hectares to have adequate sanitary infrastructure and begin the closure and recovery of its current dump. This study will contribute to providing accurate data on MSW generation that allows the local government to promote the optimization of collection routes and schedules, resulting in cost savings and reduction of carbon emissions in the Amazon Region. Therefore, it is necessary to raise awareness at all levels of society through various means of communication and education, so that the risks of spreading health risks can be minimized by improving MSW management.
Copyright © by EnPress Publisher. All rights reserved.