This study evaluates the effectiveness of Indonesia’s defense industry policy from 2018 to 2023, focusing on PT Pindad, a pivotal state-owned defense enterprise. Using a Balanced Scorecard (BSC) framework, the study assesses PT Pindad’s performance across financial, customer, internal process, and learning and growth perspectives. The findings reveal strengths in financial stability (Current Ratio at 115.57% in 2023) and customer satisfaction, but challenges in Return on Investment (ROI), which fell from 6% in 2022 to 5.46% in 2023, signaling a need for further internal improvements. A mediation analysis using Shape-Restricted Regression indicates that Research and Development (R&D) serves as a crucial mediator, enhancing the impact of strategic alliances and technology transfer on PT Pindad’s self-reliance, with R&D showing a positive coefficient of β = 0.53 (p < 0.01). The systematic literature review complements these findings, underscoring the role of technology transfer, human capital development, and strategic partnerships as essential components for strengthening PT Pindad’s self-reliance and global competitiveness. Recommendations are made to enhance policy effectiveness by fostering robust technology transfer mechanisms, increasing investment in human capital, and expanding strategic partnerships. This research contributes to the literature on defense industry policies by providing a comprehensive evaluation framework that informs future policy decisions.
Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
Copyright © by EnPress Publisher. All rights reserved.