Low integrity is a challenge for any organization. However, most organizations emphasize integrity without explaining what is required of an individual with high integrity. Exhibiting high integrity is necessary for academics; yet, the level of academic integrity remains unclear. Therefore, the purpose of this study is to examine the integrity level of academicians in a Malaysian public university. This paper shares the findings on the level of integrity of academics based on a questionnaire completed by 213 academicians. Data were collected by survey questionnaire and was analyzed using descriptive and inferential statistics. An overall mean score of 9.45 from a possible 10.0 indicated a high level of integrity among academics. The self-evaluation results by academics also demonstrated that they have attained integrity at a high level for their generic task, teaching and learning, research and publications and service for community with a mean score between 9.36 and 9.49. The value with the highest mean score was for “service to community”, whereas the lowest was for “research and publication”. These findings show that the university has successfully instilled values of integrity among academicians. Nevertheless, the university must continue to enhance academic integrity by exploring religiosity. Using Google Scholar, a literature search identified an Islam-based academic integrity model to explain the quantitative findings. Finally, a mixed method approach and involving all universities in Malaysia are recommended to further the findings of this study.
In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.