Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
Solid waste has become a major environmental concern globally in recent years due to the tremendous increase in waste generation. However, these wastes (e.g., plastics and agro-residues) can serve as potential raw materials for the production of value-added products such as composites at low cost. The utilization of these waste materials in the composite industry is a good strategy for maintaining the sustainability of resources with economic and environmental benefits. In this report, the environmental impacts and management strategies of solid waste materials are discussed in detail. The study described the benefits of recycling and reusing solid wastes (i.e., plastic and agro-waste). The report also reviewed the emerging fabrication approaches for natural particulate hybrid nanocomposite materials. The results of this survey reveal that the fabrication techniques employed in manufacturing composite materials could significantly influence the performance of the resulting composite products. Furthermore, some key areas have been identified for further investigation. Therefore, this report is a state-of-the-art review and stands out as a guide for academics and industrialists.
Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
Copyright © by EnPress Publisher. All rights reserved.