This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
Copyright © by EnPress Publisher. All rights reserved.