Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
With modern society and the ever-increasing consumption of polymeric materials, the way we look at products has changed, and one of the main questions we have is about the negative impacts caused to the environment in the most diverse stages of the life cycle of these materials, whether in the acquisition of raw materials, in manufacturing, distribution, use or even in their final disposal. The main methodology currently used to assess the environmental impacts of products from their origin to their final disposal is known as Life Cycle Assessment (LCA). Thus, the objective of this work is to evaluate how much the biodegradable polymer contributes to the environment in relation to the conventional polymer considering the application of LCA in the production mode. This analysis is configured through the Systematic Literature Review (SLR) method. In this review, 28 studies were selected for evaluation, whose approaches encompass knowledge on LCA, green biopolymer (from a renewable but non-biodegradable source), conventional polymer (from a non-renewable source) and, mainly, the benefits of using biodegradable polymers produced from renewable sources, such as: corn, sugarcane, cellulose, chitin and others. Based on the surveys, a comparative analysis of LCA applications was made, whose studies considered evaluating quantitative results in the application of LCA, in biodegradable and conventional polymers. The results, based on comparisons between extraction and production of biodegradable polymers in relation to conventional polymers, indicate greater environmental benefits related to the use of biodegradable polymers.
This paper examines the transformative potential of e-government in public administration, focusing on its capacity to enhance service delivery, transparency, accessibility, cost efficiency, and civic engagement. The study identifies key challenges, including inadequate technological infrastructure, cybersecurity vulnerabilities, resistance to change within public institutions, and a lack of public awareness about e-government services. These barriers hinder the seamless operation and adoption of digital government initiatives. Conversely, the study highlights significant opportunities such as streamlined service delivery, enhanced transparency through real-time access to government data, increased accessibility for marginalized and remote communities, substantial cost savings, and greater civic engagement via digital platforms. Addressing these challenges through targeted strategies—enhancing technological infrastructure, bolstering cybersecurity, managing organizational change, and raising public awareness—can help policymakers and public administrators implement more effective and inclusive e-government initiatives. Additionally, the integration of these digital solutions can drive sustainable development and digital inclusion, fostering social equity and economic growth. By leveraging these opportunities, governments can achieve more efficient, transparent, and accountable governance. Ultimately, the successful implementation of e-government can transform the relationship between citizens and the state, building trust and fostering a more participatory democratic process.
Given the heavy workload faced by teachers, automatic speaking scoring systems provide essential support. This study aims to consolidate technological configurations of automatic scoring systems for spontaneous L2 English, drawing from literature published between 2014 and 2024. The focus will be on the architecture of the automatic speech recognition model and the scoring model, as well as on features used to evaluate phonological competence, linguistic proficiency, and task completion. By synthesizing these elements, the study seeks to identify potential research areas, as well as provide a foundation for future research and practical applications in software engineering.
Copyright © by EnPress Publisher. All rights reserved.