By carrying out a laboratory experiment, the influence of priming methods, including ZnSO4, BSN, and hydropriming was evaluated on the seed germination of hybrid AS71 corn. Then, the main and interaction effects of the priming methods, planting dates, and weed interference levels were surveyed on the vegetative growth traits, yield, and yield components of corn in a field experiment. Based on the lab experiment, although the maximum germination percentage (100%) was observed in the treated plots by hydropriming 22 h after treatment (HAT), the greatest seedling vigor index (122.99) was recorded with treated seeds by ZnSO4 (0.03 mg L–1) at 8 HAT. The greatest emergence index was observed in the treated plots by hydropriming on both planting dates of June 1 and 11. The interaction of planting dates and weed interference levels revealed that the highest emergence index (14%–17%) occurred in the weed-free plots on both planting dates. BSN recorded the greatest corn 1000-grain weight that was significantly higher than the control plots by 28%. Furthermore, BSN enhanced the corn grain yield compared with the control plots by 63% and 24.9% on the planting dates of June 1 and 11, respectively. BSN, as a nutri-priming approach, by displaying the highest positive effects in boosting the corn grain yield in both weedy and weed-free plots as well as both planting dates, could be a recommendable option for growers to improve the crop yield production.
Metal oxide-based nanohybrids have become multipurpose materials that connect basic nanoscience with useful technology uses. They are appealing for a variety of sectors, from biology to energy and environmental remediation, due to their tunable physicochemical features and synergistic interactions. The main synthesis approaches—physical, chemical, and green/biological—are presented in a cohesive manner in this review, emphasizing their benefits, drawbacks, scalability, and appropriateness for various application requirements. Characterization methods including spectroscopy, diffraction, and microscopy are presented as crucial connections that link final functional performance with structure, composition, and morphology in addition to being analytical instruments. Additionally, the review incorporates new advancements such as data-driven intelligent material design, sustainable synthesis utilizing microbes and plant extracts, and machine learning-assisted process optimization. All things considered, this work provides a coherent overview linking synthesis techniques, property assessment, and application potential, providing insights that can direct the future development of effective, environmentally friendly metal oxide nanohybrids designed for practical technological deployment.
A comprehensive proteomic analysis was carried out to evaluate leaf proteome changes of Brassica napus cultivars as an important oilseed crop inoculated with the bacterium Pseudomonas fluorescens FY32 under salt stress. Based on the physiochemical characteristics of canola, Hyola308 was a tolerant and Sarigol was a salt sensitive cultivar. Gel-based proteomics indicated that proteins related to energy/metabolism, cell/membrane maintenance, signalins, stress, and development respond to salt stress and bacterial inoculation in both cultivars. Under salt stress, Hyola308 launches mechanisms similar to Sarigol, but the tolerance was related to consuming less energy consumption than Sarigol for launching the proper pathway/mechanism. Inoculation with plant growth promoting bacteria promotes relative growth rate and net assimilation rate; causes increase in soluble sugar content (12–32% varing to cultivars and salt treatments), as an osmo-protectant, in leaves of Sarigol and Hyola308 in control and salt stress conditions. The groups of proteins that are affected due to inoculation (18 and14 functional groups in Hyola308 and Sarigol, respectively) are varying to stress-influenced groups (10 and 6 functional groups in Hyola308 and Sarigol, respectively) that might be because of regulating tolerance mechanism of plant and/or plant-growth promoting bacteria inoculation. Furthermore, it is recognized that P. fluorescens FY32 has a dual effect on the cultivars including a pathogenic effect and a growth promoting effect on both cultivars under salt stress.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
In the teaching of professional courses, the introduction of information technology teaching mode, currently the most widely used is blended teaching. This teaching mode highlights the student's learning subject status, and the overall teaching effect is significant. Linux course is a highly practical course, and the introduction of blended teaching mode in specific course teaching is of great significance for promoting curriculum reform and development. This article provides a brief introduction to Linux courses, analyzes the importance of blended teaching methods, and explores strategies for effectively applying online and offline mixed teaching modes in Linux courses.
Copyright © by EnPress Publisher. All rights reserved.