1. Goyal A, Tanwar B, Sihag MK, et al. eds. Rapeseed/canola (Brassica napus) seed. Oilseeds: Health Attributes and Food Applications. Springer Singapore; 2021. doi: 10.1007/978-981-15-4194-0
2. Ahmad F, Abbas S, Bibi A, et al. Canola oil as a bio-additive: Properties, processing and applications. Vegetable Oil-Based Composites, Processing, Properties and Applications. 2024; 59–85
3. Kumari VV, Banerjee P, Verma VC, et al. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. International Journal of Molecular Sciences. 2022; 23(15): 8519. doi: 10.3390/ijms23158519
4. Viana VE, Aranha BC, Busanello C, et al. Metabolic profile of canola (Brassica napus L.) seedlings under hydric, osmotic and temperature stresses. Plant Stress. 2022; 3: 100059. doi: 10.1016/j.stress.2022.100059
5. Hao S, Wang Y, Yan Y, et al. A Review on Plant Responses to Salt Stress and Their Mechanisms of Salt Resistance. Horticulturae. 2021; 7(6): 132. doi: 10.3390/horticulturae7060132
6. Rajabi Dehnavi A, Zahedi M, Piernik A. Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms. Frontiers in Plant Science. 2024; 14. doi: 10.3389/fpls.2023.1296286
7. Ashraf M, Munns R. Evolution of Approaches to Increase the Salt Tolerance of Crops. Critical Reviews in Plant Sciences. 2022; 41(2): 128–160. doi: 10.1080/07352689.2022.2065136
8. Khan MO, Farooq N, Nawaz MA, et al. Evaluation of the Salt Tolerance Potential of Commercial Brassica Cultivars. Communications in Soil Science and Plant Analysis. 2023; 55(4): 498–516. doi: 10.1080/00103624.2023.2274032
9. Kumar D, Ali Mohd, Sharma N, et al. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? Environmental Science and Pollution Research. 2024; 31(35): 47423–47460. doi: 10.1007/s11356-024-34157-1
10. Byregowda R, Prasad SR, Oelmüller R, et al. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. International Journal of Molecular Sciences. 2022; 23(16): 9194. doi: 10.3390/ijms23169194
11. Cheng Z, Woody OZ, McConkey BJ, et al. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Applied Soil Ecology. 2012; 61: 255–263. doi: 10.1016/j.apsoil.2011.10.006
12. Bal HB, Nayak L, Das S, et al. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil. 2012; 366(1–2): 93–105. doi: 10.1007/s11104-012-1402-5
13. Farajzadeh D, Aliasgharzad N, Sokhandan Bashir N, et al. Cloning and Characterization of a Plasmid Encoded ACC Deaminase from an Indigenous Pseudomonas fluorescens FY32. Current Microbiology. 2010; 61(1): 37–43. doi: 10.1007/s00284-009-9573-x
14. Banaei-Asl F, Bandehagh A, Uliaei ED, et al. Proteomic analysis of canola root inoculated with bacteria under salt stress. Journal of Proteomics. 2015; 124: 88–111. doi: 10.1016/j.jprot.2015.04.009
15. Banaei-Asl F, Farajzadeh D, Bandehagh A, et al. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics. 2016; 1864(9): 1222–1236. doi: 10.1016/j.bbapap.2016.04.013
16. Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum. 2003; 118(1): 10–15. doi: 10.1034/j.1399-3054.2003.00086.x
17. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular. California agricultural experiment station. 1950.
18. Bertani G. Studies on lysogenesis I. Journal of Bacteriology. 1951; 62(3): 293–300. doi: 10.1128/jb.62.3.293-300.1951
19. McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA: The Journal of the American Medical Association. 1907; XLIX(14): 1176. doi: 10.1001/jama.1907.25320140022001f
20. Negrão S, Schmöckel SM, Tester M. Evaluating physiological responses of plants to salinity stress. Annals of Botany. 2016; 119(1): 1–11. doi: 10.1093/aob/mcw191
21. Tabatabai MA. Handbook of Reference Methods for Plant Analysis. Crop Science. 1998; 38(6): 1710–1711. doi: 10.2135/cropsci1998.0011183x003800060050x
22. Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and Ion Content of Leaves and Isolated Chloroplasts of Salt-Stressed Spinach. Plant Physiology. 1983; 73(2): 238–242. doi: 10.1104/pp.73.2.238
23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72(1–2): 248–254. doi: 10.1016/0003-2697
24. Rotter A, Usadel B, Baebler Š, et al. Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species. Plant Methods. 2007; 3(1): 10. doi: 10.1186/1746-4811-3-10
25. Usadel B, Poree F, Nagel A, et al. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant, Cell & Environment. 2009; 32(9): 1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x
26. Lohse M, Nagel A, Herter T, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell & Environment. 2013; 37(5): 1250–1258. doi: 10.1111/pce.12231
27. Azeem M, Pirjan K, Qasim M, et al. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports. 2023; 13(1). doi: 10.1038/s41598-023-29954-6
28. Qasim M, Ashraf M, Ashraf MY, et al. Salt-induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum. 2003; 46: 629–632. doi: 10.1023/A:1024844402000
29. Afzal S, Chaudhary N, Singh NK. Role of soluble sugars in metabolism and sensing under abiotic stress. Plant Growth Regulators: Signalling under Stress Conditions. 2021
30. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science. 2015; 6. doi: 10.3389/fpls.2015.00084
31. Kaur H, Manna M, Thakur T, et al. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiologia Plantarum. 2021; 171(4): 833–848. doi: 10.1111/ppl.13364
32. Munns R, Tester M. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 2008; 59(1): 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
33. Ozturk M, Turkyilmaz Unal B, García‐Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum. 2020; 172(2): 1321–1335. doi: 10.1111/ppl.13297
34. Sardans J, Peñuelas J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants. 2021; 10(2): 419. doi: 10.3390/plants10020419
35. Mukarram M, Choudhary S, Kurjak D, et al. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum. 2021; 172(2): 1291–1300. doi: 10.1111/ppl.13423
36. El-Badri AMA, Batool M, Mohamed IAA, et al. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiology and Biochemistry. 2021; 166: 376–392. doi: 10.1016/j.plaphy.2021.05.040
37. Anand R, Marmorstein R. Structure and Mechanism of Lysine-specific Demethylase Enzymes. Journal of Biological Chemistry. 2007; 282(49): 35425–35429. doi: 10.1074/jbc.r700027200
38. Liu M, Jiang J, Han Y, et al. Functional Characterization of the Lysine-Specific Histone Demethylases Family in Soybean. Plants. 2022; 11(11): 1398. doi: 10.3390/plants11111398
39. Wang X, Liu X, Song K, et al. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. Frontiers in Plant Science. 2024; 15. doi: 10.3389/fpls.2024.1396634
40. Suranjika S, Barla P, Sharma N, et al. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. Plant Science. 2024; 347: 112180. doi: 10.1016/j.plantsci.2024.112180
41. Kim MS, Kang KK, Cho YG. Molecular and Functional Analysis of U-box E3 Ubiquitin Ligase Gene Family in Rice (Oryza sativa). International Journal of Molecular Sciences. 2021; 22(21): 12088. doi: 10.3390/ijms222112088
42. Welinder KG. Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology. 1992; 2(3): 388–393. doi: 10.1016/0959-440X(92)90230-5
43. Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology. 2014; 21: 133–139. doi: 10.1016/j.pbi.2014.07.009
44. Sachdev S, Ansari SA, Ansari MI, et al. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants. 2021; 10(2): 277. doi: 10.3390/antiox10020277
45. del Río LA, Corpas FJ, Sandalio LM, et al. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany. 2002; 53(372): 1255–1272. doi: 10.1093/jxb/53.372.1255
46. Yang Y, He M, Zhu Z, et al. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biology. 2012; 12(1). doi: 10.1186/1471-2229-12-140
47. Hurkman WJ, Tanaka CK. Effect of Salt Stress on Germin Gene Expression in Barley Roots. Plant Physiology. 1996; 110(3): 971–977. doi: 10.1104/pp.110.3.971
48. Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in Plant Science. 2014; 5. doi: 10.3389/fpls.2014.00006
49. Tracy MR, Hedges SB. Evolutionary history of the enolase gene family. Gene. 2000; 259(1–2): 129–138. doi: 10.1016/S0378-1119(00)00439-X
50. Lawlor D. Abiotic Stress Adaptation in Plants. Physiological, Molecular and Genomic Foundation. Annals of Botany. 2011; 107(4): vii–ix. doi: 10.1093/aob/mcr053
51. Sato Y, Ashihara H. Long-term effect of NaCl on the activity of uridine and uracil salvage for nucleotide synthesis in cultured mangrove (Bruguiera sexangula) cells. Plant Science. 2009; 176(3): 383–389. doi: 10.1016/j.plantsci.2008.12.006
52. Kristal BS, Vigneau-Callahan KE, Moskowitz AJ, et al. Purine Catabolism: Links to Mitochondrial Respiration and Antioxidant Defenses?. Archives of Biochemistry and Biophysics. 1999; 370(1): 22–33. doi: 10.1006/abbi.1999.1387
53. Lichtfouse E, ed. Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Springer Netherlands; 2011. doi: 10.1007/978-94-007-0186-1
54. Mostafavi K. Effect of salt stress on germination and early seedling growth stage of sugar beet cultivars. American-Eurasian Journal of Sustainable Agriculture. 2012; 6(2): 120–125.
55. Kosová K, Prášil I, Vítámvás P. Protein Contribution to Plant Salinity Response and Tolerance Acquisition. International Journal of Molecular Sciences. 2013; 14(4): 6757–6789. doi: 10.3390/ijms14046757
56. Verma SC, Ladha JK, Tripathi AK. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology. 2001; 91(2–3): 127–141. doi: 10.1016/S0168-1656(01)00333-9
57. Compant S, Reiter B, Sessitsch A, et al. Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN. Applied and Environmental Microbiology. 2005; 71(4): 1685–1693. doi: 10.1128/aem.71.4.1685-1693.2005
58. Farwell AJ, Vesely S, Nero V, et al. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environmental Pollution. 2007; 147(3): 540–545. doi: 10.1016/j.envpol.2006.10.014
59. Dodd IC, Zinovkina NY, Safronova VI, et al. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology. 2010; 157(3): 361–379. doi: 10.1111/j.1744-7348.2010.00439.x
60. Honma M, Shimomura T. Metabolism of 1-Aminocyclopropane-1-carboxylic Acid. Agricultural and Biological Chemistry. 1978; 42(10): 1825–1831. doi: 10.1080/00021369.1978.10863261
61. Puga-Freitas R, Blouin M. A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany. 2015; 114: 104–116. doi: 10.1016/j.envexpbot.2014.07.006
62. Gray EJ, Smith DL. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry. 2005; 37(3): 395–412. doi: 10.1016/j.soilbio.2004.08.030
63. DeRidder BP, Salvucci ME. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Science. 2007; 172(2): 246–254. doi: 10.1016/j.plantsci.2006.08.014
64. Law DR, Crafts-Brandner SJ, Salvucci ME. Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta. 2001; 214(1): 117–125. doi: 10.1007/s004250100592
65. Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology. 2010; 60(4): 579–598. doi: 10.1007/s13213-010-0117-1
66. Wassim A, Ichrak BR, Saïda A. Putative role of proteins involved in detoxification of reactive oxygen species in the early response to gravitropic stimulation of poplar stems. Plant Signaling & Behavior. 2013; 8(1): e22411. doi: 10.4161/psb.22411
67. Yachandra VK, DeRose VJ, Latimer MJ, et al. Where Plants Make Oxygen: a Structural Model for the Photosynthetic Oxygen-Evolving Manganese Cluster. Science. 1993; 260(5108): 675–679. doi: 10.1126/science.8480177
68. Gamalero E, Trotta A, Massa N, et al. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza. 2003; 14(3): 185–192. doi: 10.1007/s00572-003-0256-3
69. Henry RP. Multiple Roles of Carbonic Anhydrase in Cellular Transport and Metabolism. Annual Review of Physiology. 1996; 58(1): 523–538. doi: 10.1146/annurev.ph.58.030196.002515
70. Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology. 2009; 63(1): 541–556. doi: 10.1146/annurev.micro.62.081307.162918
71. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University—Science. 2014; 26(1): 1–20. doi: 10.1016/j.jksus.2013.05.001
72. Bones AM, Rossiter JT. The myrosinase—glucosinolate system, its organisation and biochemistry. Physiologia Plantarum. 1996; 97(1): 194–208. doi: 10.1111/j.1399-3054.1996.tb00497.x
73. Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology. 2006; 57(1): 303–333. doi: 10.1146/annurev.arplant.57.032905.105228
74. Himmelbach A, Iten M, Grill E. Signalling of abscisic acid to regulate plant growth. Chua N –H., Hetherington AM, Hooley R, Irvine RF, eds. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 1998; 353(1374): 1439–1444. doi: 10.1098/rstb.1998.0299
75. Chiwocha SDS, Cutler AJ, Abrams SR, et al. The etr1‐2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist‐chilling and germination. The Plant Journal. 2005; 42(1): 35–48. doi: 10.1111/j.1365-313x.2005.02359.x
76. Kato Y, Sakamoto W. Protein Quality Control in Chloroplasts: A Current Model of D1 Protein Degradation in the Photosystem II Repair Cycle. Journal of Biochemistry. 2009; 146(4): 463–469. doi: 10.1093/jb/mvp073
77. Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment. 2002; 25(2): 163–171. doi: 10.1046/j.0016-8025.2001.00790.x
78. Koyama T, Furutani M, Tasaka M, et al. TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes inArabidopsis. The Plant Cell. 2006; 19(2): 473–484. doi: 10.1105/tpc.106.044792
79. Hisabori T, Sunamura EI, Kim Y, et al. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery. Antioxidants & Redox Signaling. 2013; 19(15): 1846–1854. doi: 10.1089/ars.2012.5044
80. Drea SC, Mould RM, Hibberd JM, et al. Tissue-specific and developmental-specific expression of an Arabidopsis thaliana gene encoding the lipoamide dehydrogenase component of the plastid pyruvate dehydrogenase complex. Plant Molecular Biology. 2001; 46: 705–715. doi: 10.1023/A:1011612921144
81. Hamilton CA, Good AG, Taylor GJ. Induction of Vacuolar ATPase and Mitochondrial ATP Synthase by Aluminum in an Aluminum-Resistant Cultivar of Wheat. Plant Physiology. 2001; 125(4): 2068–2077. doi: 10.1104/pp.125.4.2068
82. Moriyama Y, Nelson N. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump. Journal of Biological Chemistry. 1987; 262(19): 9175–9180. doi: 10.1016/S0021-9258(18)48064-7
83. Boyd JM, Endrizzi JA, Hamilton TL, et al. FAD Binding by ApbE Protein from Salmonella enterica : a New Class of FAD-Binding Proteins. Journal of Bacteriology. 2011; 193(4): 887–895. doi: 10.1128/jb.00730-10
84. Dym O, Eisenberg D. Sequence—structure analysis of FAD—containing proteins. Protein Science. 2001; 10(9): 1712–1728. doi: 10.1110/ps.12801
85. Winkler A, Hartner F, Kutchan TM, et al. Biochemical Evidence That Berberine Bridge Enzyme Belongs to a Novel Family of Flavoproteins Containing a Bi-covalently Attached FAD Cofactor. Journal of Biological Chemistry. 2006; 281(30): 21276–21285. doi: 10.1074/jbc.m603267200
86. Maurizi M, Clark WP, Kim SH, Gottesman S. Clp P represents a unique family of serine proteases. Journal of Biological Chemistry. 1990; 265(21): 12546–12552. doi: 10.1016/S0021-9258(19)38379-6
87. Huang C, Wang S, Chen L, et al. The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Molecular and General Genetics MGG. 1994; 244(2): 151–159. doi: 10.1007/bf00283516
88. Halperin T, Adam Z. Degradation of mistargeted OEE33 in the chloroplast stroma. Plant Molecular Biology. 1996; 30(5): 925–933. doi: 10.1007/bf00020804