Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
The achievement of sustainable development in Kenya has been hindered by the prevalence of HIV. The effects of HIV on sustainable development have been given less academic attention. HIV prevalence prevents people from achieving good health and well-being, which then makes them unable to conduct activities that lead to sustainable economic growth. The paper found that the prevalence of HIV causes economic hardship, destroys human capital development and human resources by reducing life expectancy and increasing mortality rates. It was equally found that the prevalence of HIV undermines social stability and mobility, reduces economic investments, influences food insecurity and makes people vulnerable. The paper found that the prevalence of HIV reduces labor supply and productivity, increases the cost of health services, promote inequality and poverty. The paper found that the prevalence of HIV was caused by the failure to integrate religion, culture and science infrastructure to achieve a holistic treatment acceptance and adherence that would overcome all misconceptions people have towards the disease. The paper found that while science provides effective HIV treatments, religious and cultural perspectives often shape community attitudes toward the disease. It was found that engaging religious and cultural as well as health workers or health advocates can help reduce stigma and promote ART adherence by aligning treatment messages with faith-based principles. The paper found that the integration that incorporates religion, culture, and science into HIV interventions would promote a more inclusive healthcare system that respects diverse beliefs while ensuring evidence-based treatment is accessible and widely accepted. The study was conducted through a qualitative methodology. Data was collected from secondary sources that included published articles, books and occasional papers as well as reports. Collected data was interpreted and analyzed through document analysis techniques.
This study explores the impact of online assessments on students’ academic performance and learning outcomes at the University of Technology in South Africa. The research problem addresses the effectiveness and challenges of digital assessment platforms in higher education (HE), particularly their influence on student engagement, feedback quality, and academic integrity. A qualitative case study approach was employed, involving semi-structured interviews with ten undergraduate and postgraduate students from diverse academic backgrounds. The findings reveal that while online assessments provide flexibility and immediate feedback, they also pose challenges related to technical issues, feedback delays, and concerns about long-term knowledge retention. The study highlights the necessity of aligning assessment strategies with constructivist learning principles to enhance critical thinking and student-centered learning. Implications for theory include strengthening the application of constructivist learning in digital environments, while practical recommendations focus on improving assessment design, institutional support, and feedback mechanisms. Policy adjustments should consider inclusive and equitable access to online assessments. Future research should further investigate the long-term impact of digital assessments on professional readiness. This study contributes to ongoing discussions on online education by offering a nuanced understanding of digital assessment challenges and opportunities in higher education.
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Copyright © by EnPress Publisher. All rights reserved.