Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
The efficiencies and performance of gas turbine cycles are highly dependent on parameters such as the turbine inlet temperature (TIT), compressor inlet temperature (T1), and pressure ratio (Rc). This study analyzed the effects of these parameters on the energy efficiency, exergy efficiency, and specific fuel consumption (SFC) of a simple gas turbine cycle. The analysis found that increasing the TIT leads to higher efficiencies and lower SFC, while increasing the To or Rc results in lower efficiencies and higher SFC. For a TIT of 1400 ℃, T1 of 20 ℃, and Rc of 8, the energy and exergy efficiencies were 32.75% and 30.9%, respectively, with an SFC of 187.9 g/kWh. However, for a TIT of 900 ℃, T1 of 30 ℃, and Rc of 30, the energy and exergy efficiencies dropped to 13.18% and 12.44%, respectively, while the SFC increased to 570.3 g/kWh. The results show that there are optimal combinations of TIT, To, and Rc that maximize performance for a given application. Designers must consider trade-offs between efficiency, emissions, cost, and other factors to optimize gas turbine cycles. Overall, this study provides data and insights to improve the design and operation of simple gas turbine cycles.
Inequity in infrastructure distribution and social injustice’s effects on Ethiopia’s efforts to build a democratic society are examined in this essay. By ensuring fair access to infrastructure, justice, and economic opportunity, those who strive for social justice aim to redistribute resources in order to increase the well-being of individuals, communities, and the nine regional states. The effects that social inequity and injustice of access to infrastructure have on Ethiopia’s efforts to develop a democratic society were the focus of the study. Time series analysis using principal component analysis (PCA) and composite infrastructure index (CII), as well as structural equation modeling–partial least squares (SEM-PLS), were necessary to investigate this issue scientifically. This study also used in-depth interviews and focus group discussions to support the quantitative approach. The research study finds that public infrastructure investments have failed or have been disrupted, negatively impacting state- and nation-building processes of Ethiopia. The findings of this research also offer theories of coordination, equity, and infrastructure equity that would enable equitable infrastructure access as a just and significant component of nation-building processes using democratic federalism. Furthermore, this contributes to both knowledge and methodology. As a result, indigenous state capability is required to assure infrastructure equity and social justice, as well as to implement the state-nation nested set of policies that should almost always be a precondition for effective state- and nation-building processes across Ethiopia’s regional states.
This study investigates the influence of service quality, destination facilities, destination image, and tourist satisfaction on tourist loyalty in the Pasar Lama Chinatown area of Tangerang City. Utilizing data from 400 respondents, the study employed structured questionnaires analyzed through descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis, and structural equation modeling (SEM). The results reveal that service quality (β = 0.47, p < 0.001), destination facilities (β = 0.33, p < 0.001), and destination image (β = 0.4, p < 0.001) all significantly enhance tourist satisfaction, which in turn has a strong positive effect on loyalty (β = 0.58, p < 0.001). Direct paths also show that service quality, destination facilities, and destination image independently contribute to tourist loyalty. Bootstrapping confirms satisfaction’s mediating role between these factors and loyalty. Practical recommendations suggest prioritizing service quality improvements, facility enhancements, and a positive destination image to foster loyalty and promote tourism sustainability in Pasar Lama, China. These insights assist tourism managers in developing strategies to enhance long-term visitor retention and engagement in the area.
Copyright © by EnPress Publisher. All rights reserved.