The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
With the continuous development of social economy and science and technology, the world has entered the era of artificial intelligence. my country is also working hard on the cultivation of talents in the field of artificial intelligence, and paying more and more attention to technology research and development. This puts forward higher requirements for cultivating higher education talents. It is not only necessary to work hard on the cultivation of “people”, implement the concept of mass entrepreneurship and innovation, adapt to the development of the times, update educational concepts, and improve students’ thinking ability and logic ability. We must also work hard on “talent”, innovate teaching methods, integrate education with science and technology, and provide talent guarantee and intellectual support for social development.
In 2015, the newly built undergraduate colleges have accounted for half of the ordinary undergraduate colleges. Through the investigation, it is concluded that the newly built undergraduate colleges in Sichuan have the following commonalities in the transformation: the school positioning of "application-oriented"; The embodiment of the new university spirit of "serving local construction"; The talent training goal of "innovative and composite applied talents"; Flexible personnel training curriculum system.
Under the background of engineering education certification, the traditional personnel training model can’t meet the requirements of high-quality personnel training under the new engineering background. Taking Surveying and mapping engineering major of Liaoning Institute of Science and Technology as an example, this paper explores the continuous improvement of the output-oriented talent training model through collaborative education of talents training objectives, curriculum system, practical teaching system, teacher team construction, enterprises and graduates. Over the years, the surveying and mapping engineering major of our school has achieved good results in personnel training. The major actively ADAPTS to the regional development of the local economy, closely connects with the needs of regional talents, and highlights its characteristics in serving the local economy.
The development of artificial intelligence (AI) and 5G network technology has changed the production and lifestyle of people. AI also has promoted the transformation of talent training mode under the integration of college industry and education. In the context of the current transformation of education, AI and 5G networks are increasingly used in the education industry. This paper optimizes and upgrades the training mode of skilled talents in higher vocational colleges by using its advanced methods and technologies of information display. This means is helpful to analyze and solve a series of objective problems such as the single training form of the current talent training mode. This paper utilizes the principles and laws of industry university research (IUR) collaboration for reference to construct and optimize the talent training mode based on the analysis of the requirements of talent training and the role of each subject in talent training. Then, the ecological talent training environment can be realized. In the analysis of talent training mode under the cooperation of production and education, the correlation coefficients of network construction, environment construction, scientific research funds, scientific research level, and policy support were 0.618, 0.576, 0.493, 0.785, and 0.451, respectively. This showed that the scientific research level had the greatest impact on talent training in the talent training mode of IUR collaboration, while policy support had less impact on talent training compared with other factors. The combination of AI and 5G network technology with the talent training mode of IUR cooperation can effectively analyze the influencing factors and problems of the talent training mode. The hybrid method is of great significance to the talent training strategy and fitting degree.
Copyright © by EnPress Publisher. All rights reserved.