The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Cobalt-based sulfides have emerged as promising candidates for next-generation high-performance anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and reversible conversion reaction mechanisms. However, their practical application is hindered by volume expansion effects and relatively low rate performance. Guided by theoretical principles, this study synthesizes nanoscale Bi/CoS-C and Bi/Co4S3-C (denoted as Bi/CS-C) composite materials using Co and Bi2S3 as precursors via a solid-state ball milling method. The electrochemical properties of these materials were systematically investigated. When employed as anodes for LIBs, Bi/CoS-C and Bi/CS-C exhibit excellent rate capabilities. At current densities of 0.1, 0.5, 1, 4, and 10 A/g, the reversible capacities of Bi/CoS-C were 939.2, 730.7, 655.6, 508.1, and 319 mAh/g, respectively. In contrast, Bi/CS-C exhibited reversible capacities of 760.4, 637.6, 591.9, 484.3, and 295.4 mAh/g, respectively. Moreover, Co4S3, as an active component, enables superior long-cycle performance compared to CoS. After 300 cycles at 0.2 A/g, the Bi/CoS-C and Bi/CS-C electrodes retained capacities of 193.1 and 788.8 mAh/g, respectively. This study demonstrates that nanostructure design and carbon-based composite materials can effectively mitigate the volume expansion issue of cobalt-based sulfides, thereby enhancing their rate performance and cycling stability. This strategy provides new insights for the development of high-performance anode materials for lithium-ion batteries and is expected to accelerate their practical application in next-generation energy storage devices.
The MDA-MB-231 cell line is derived from triple-negative breast cancer (TNBC), representing one of the most aggressive forms of breast cancer. Innovative therapeutic strategies, including s targeted therapies using nanocarriers, hold significant promise, particularly for difficult-to-treat cancers such as TNBC. Nanoparticles have transformed the medical field by serving as advanced drug delivery systems for cancer treatment. They play a critical role in overcoming the drug resistance often associated with cancer therapies. When utilized as drug delivery vehicles, nanoparticles can specifically target cancer cells and effectively reduce or eliminate multidrug resistance. Among them, chitosan-coated magnetic nanoparticles (MNPs) have been widely explored for the loading and controlled release of various anticancer agents. In this study, we evaluated the effects of dexamethasone-loaded chitosan-coated MNPs on MDA-MB-231 cell lines. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to verify the successful loading of dexamethasone onto the nanoparticles. To assess cytotoxicity, empty nanoparticles, free drug, and drug-loaded nanoparticles were tested on the cells. The results indicated that empty nanoparticles exhibited no toxic effects. The IC50 value of the free drug was 123 µg/mL, while the IC50 value of the drug-loaded nanoparticles was significantly lower, at 63 µg/mL. These findings confirmed the successful conjugation of dexamethasone to the chitosan-coated MNPs, demonstrating substantial cytotoxic effects on breast cancer cells. Although dexamethasone has been reported to exhibit both tumor-suppressive and pro-metastatic effects, its specific impact on TNBC warrants further investigation in future studies.
Municipal authorities in industrialized and in developing countries face unceasingly the issues of congestion, insufficiency of transport means capacity, poor operability of transport systems and a growing demand for reliable and effective urban transport. While the expansion of infrastructure is generally considered as an undesirable option, in specific cases, when short links or ring roads are missing, new infrastructure projects may provide beneficial solutions. The upgrading and renewal of existing networks is always a challenge to the development of a modern city and the welfare of citizens. Central governance and management of transport systems, the establishment of smart and digital infrastructure, advanced surveillance and traffic monitoring, and intra-city energy-harvesting policy are some of the steps to be taken during the transition to a green and sustainable urban future.
Municipal authorities have also to consider other options and strategies to create a citizen-friendly setting for mobility: diminish the need for trips (digitalization of services, e-commerce, etc.), shift from private to public transport and transform the urban form to promote non-motorized transport in favor of the natural environment and public health. A citizen-friendly policy based on the anticipation of future needs and technological development seems to be a requisite for European cities searching for a smooth integration of their networks into urban space.
This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
Copyright © by EnPress Publisher. All rights reserved.