Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Strategically managing production systems is crucial for creating value and enhancing the competitive capabilities of companies. However, research on organizational culture within these systems is scarce, particularly in the Colombian context. This research aims to evaluate cultural profiles and their impact on the performance of production systems in Colombian firms. The regional focus is vital as cultural and contextual factors can vary significantly between regions, influencing organizational behavior and performance outcomes. To achieve this, we make a study in a sample of Colombian companies, with participation from working students of the Universidad Nacional Abierta y a Distancia (UNAD). We used a data analytics approach to collected data. The results will be relevant to both the scientific community and business practitioners. This research seeks to determine whether the perception of the work environment within a company influences the perceived performance of the company. The findings will provide a deeper understanding of the relationship between organizational culture and production system performance, offering a foundation for business decision-making and enhancing competitiveness in Latin American context.
This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
Purpose: Drawing on the Resource Based View (RBV) and Dynamic Capabilities Theory (DCT), the study seeks to investigate the impact of Big Data Analytics (BDA) on Project Success (PS) through Knowledge Sharing (KS) and Innovation Performance (IPF). Design/Methodology: Survey data were collected from 422 senior-level employees in IT companies, and the proposed relationships were assessed using the SMART-PLS 4 Structural Equation Modeling tool. Findings: The results show a positive and significant indirect effect of big data analytics on project success through knowledge sharing. IPF significantly mediated the relationship between BDA and PS in IT companies. Originality/Value: This study is one of the first to consider big data analytics as an essential antecedent of project success. With little or no research on the interrelationship of big data analytics, knowledge sharing, innovation performance, and organizational performance, the study investigates the mediating role of knowledge sharing and innovation performance on the relationship between BDA and PS. Implications: This study, grounded in RBV and DCT, investigates BDA’s influence on PS through KS and IPF. Implications encompass BDA’s strategic role, KS and IPF mediation, and practical and research-based insights. Findings guide BDA integration, collaborative cultures, and sustained success.
Copyright © by EnPress Publisher. All rights reserved.