This work investigated the photocatalytic properties of polymorphic nanostructures based on silica (SiO2) and magnetite (Fe3O4) for the photodegradation of tartrazine yellow dye. In this sense, a fast, easy, and cheap synthesis route was proposed that used sugarcane bagasse biomass as a precursor material for silica. The Fourier transform infrared (FTIR) spectroscopy results showed a decrease in organic content due to the chemical treatment with NaOH solution. This was confirmed through the changes promoted in the bonds of chromophores belonging to lignin, cellulose, and hemicellulose. This treated biomass was calcined at 800 ℃, and FTIR and X-ray diffraction (XRD) also confirmed the biomass ash profile. The FTIR spectrum showed the formation of silica through stretching of the chemical bonds of the silicate group (Si-O-Si), which was confirmed by DXR with the predominance of peaks associated with the quartz phase. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) confirmed the morphological and chemical changes due to the chemical and thermal treatments applied to this biomass. Using the coprecipitation method, we synthesized Fe3O4 nanoparticles (Np) in the presence of SiO2, generating the material Fe3O4/SiO2-Np. The result was the formation of nanostructures with cubic, spherical, and octahedral geometries with a size of 200 nm. The SEM images showed that the few heterojunctions formed in the mixed material increased the photocatalytic efficiency of the photodegradation of tartrazine yellow dye by more than two times. The degradation percentage reached 45% in 120 min of reaction time. This mixed material can effectively decontaminate effluents composed of organic pollutants containing azo groups.
Mangrove forests are vital to coastal protection, biodiversity support, and climate regulation. In the Niger Delta, these ecosystems are increasingly threatened by oil spill incidents linked to intensive petroleum activities. This study investigates the extent of mangrove degradation between 1986 and 2022 in the lower Niger Delta, specifically the region between the San Bartolomeo and Imo Rivers, using remote sensing and machine learning. Landsat 5 TM (1986) and Landsat 8 OLI (2022) imagery were classified using the Support Vector Machine (SVM) algorithm. Classification accuracy was high, with overall accuracies of 98% (1986) and 99% (2022) and Kappa coefficients of 0.97 and 0.98. Healthy mangrove cover declined from 2804.37 km2 (58%) to 2509.18 km2 (52%), while degraded mangroves increased from 72.03 km2 (1%) to 327.35 km2 (7%), reflecting a 354.46% rise. Water bodies expanded by 101.17 km2 (5.61%), potentially due to dredging, erosion, and sea-level rise. Built-up areas declined from 131.85 km2 to 61.14 km2, possibly reflecting socio-environmental displacement. Statistical analyses, including Chi-square (χ2 = 1091.33, p < 0.001) and Kendall’s Tau (τ = 1, p < 0.001), showed strong correlations between oil spills and mangrove degradation. From 2012 to 2022, over 21,914 barrels of oil were spilled, with only 38% recovered. Although paired t-tests and ANOVA results indicated no statistically significant changes at broad scales, localized ecological shifts remain severe. These findings highlight the urgent need for integrated environmental policies and restoration efforts to mitigate mangrove loss and enhance sustainability in the Niger Delta.
Nowadays, copper and zinc nanoparticles are widely employed in a variety of applications. With nanoscale particle sizes, copper oxide/zinc oxide composite is easily synthesized using a variety of techniques, including hydrothermal, microwave, precipitation, etc. In the current work, chemical precipitation is used to create a copper oxide/zinc oxide nanocomposite. XRD analysis was used to determine the nanocomposite’s structural characteristics. Through SEM analysis, the surface morphological properties are investigated. EDAX is used to study the chemical composition of produced materials, while UV/Visible spectroscopy is used to determine their optical properties. The assessment of the copper oxide/zinc oxide nanocomposite’s degrading property on dyes like methyl red and methyl orange under UV and visible light are the main objectives of the current work.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
ZnO nanostructures were obtained by electrodeposition on Ni foam, where graphene was previously grown by chemical vapor deposition (CVD). The resulting heterostructures were characterized by X-ray diffraction and SEM microscopy, and their potential application as a catalyst for the photodegradation of methylene blue (MB) was evaluated. The incorporation of graphene to the Ni substrate increases the amount of deposited ZnO at low potentials in comparison to bare Ni. SEM images show homogeneous growth of ZnO on Ni/G but not on bare Ni foam. A percent removal of almost 60% of MB was achieved by the Ni/G/ZnO sample, which represents a double quantity than the other catalysts proved in this work. The synergistic effects of ZnO-graphene heterojunctions play a key role in achieving better adsorption and photocatalytic performance. The results demonstrate the ease of depositing ZnO on seedless graphene by electrodeposition. The use of the film as a photocatalyst delivers interesting and competitive removal percentages for a potentially scalable degradation process enhanced by a non-toxic compound such as graphene.
The objective of this research is to examine the effects of income inequality, governance quality, and their interaction on environmental quality in Asian countries. Time series data are obtained from 45 Asian countries for the period 1996–2020 for this empirical analysis. The research has performed various econometric tests to ensure the robustness and reliability of the results. We have addressed different econometric issues, such as autocorrelation, heteroskedasticity, and cross-sectional dependence, using the Driscoll-Kraay (DK) standard error estimation and endogeneity issues by the system generalized method of moments (S-GMM). The results of the study revealed that income inequality and governance quality have a positive impact on environmental degradation, while the interaction of governance quality with income inequality has a negative effect on it. In addition, economic growth, population growth, urbanization, and natural resource dependency are found to deteriorate the quality of the environment. The findings of the study offer insightful policies to reduce environmental degradation in Asian countries.
Copyright © by EnPress Publisher. All rights reserved.