Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
There are several factors that generate postharvest losses of Citrus sinensis, but none have been focused on the central jungle of the Junín region of Peru. The objective of this research was to evaluate postharvest losses of Citrus sinensis in the province of Satipo, Junín region of Peru, considering the stages of the production chain. The methodology was applied to descriptive and cross-sectional design. A sample of 10 orange trees, 3 transport intermediaries and 5 traders selected for compliance with minimum volume and quality requirements were used. The °Brix, pH and acidity characteristics of the fruit were determined. Subsequently, absolute and percentage losses were quantified through direct observation, surveys and interviews. The main postharvest losses of Citrus sinensis were 1.50% in harvesting and detaching, 1.75% in transport to the collection center, 2.23% in storage and transport by intermediaries, and 2.90% in storage and sale by retailers. The overall loss was 8.12% throughout the production chain and US$5.75 per MT of C. sinensis harvested. The main damages found were mechanical and biological, caused by poor harvesting and packaging techniques, precarious storage and careless transport of the merchandise.
The present study aims at analyzing the various factors influencing consumer attitudes towards the adoption of electric vehicles (EVs) in Saudi Arabia. The study evaluates consumer attitudes, their impact on shaping behaviours, and whether consumer intention mediates the relationship between consumer attitude and purchase behaviour towards EVs. This research employs a mixed-method approach, including literature review, surveys, and data analysis. It investigates EV adoption dimensions encompassing individual, social, economic, and environmental factors. Data collected from 397 current and potential EV owners in Saudi Arabia provide insights into their attitudes and behaviours. Survey findings indicate that in Saudi Arabia, safety rating, social influence, economic value, operating cost, and product variety significantly shape consumer attitudes and influence EV adoption. However, factors like range anxiety, charging infrastructure, environmental concern, and performance expectancy are less significant in affecting consumer attitudes toward EVs and their adoption. Investigating multiple dimensions and employing a mixed-method approach, the study enhances the existing knowledge of consumer attitudes toward EVs in the unique context of Saudi Arabia’s sustainable mobility transition. Policymakers and industry stakeholders can utilize these findings to expedite the shift to sustainable transportation in the Kingdom. This research also guides future investigations in this burgeoning field.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
Copyright © by EnPress Publisher. All rights reserved.