Cartography includes two major tasks: map making and map application, which is inextricably linked to artificial intelligence technology. The cartographic expert system experienced the intelligent expression of symbolism. After the spatial optimization decision of behaviorism intelligent expression, cartography faces the combination of deep learning under connectionism to improve the intelligent level of cartography. This paper discusses three problems about the proposition of “deep learning + cartography”. One is the consistency between the deep learning method and the map space problem solving strategy, based on gradient descent, local correlation, feature reduction and non-linear nature that answer the feasibility of the combination of “deep learning + cartography”; the second is to analyze the challenges faced by the combination of cartography from its unique disciplinary characteristics and technical environment, involving the non-standard organization of map data, professional requirements for sample establishment, the integration of geometric and geographical features, as well as the inherent spatial scale of the map; thirdly, the entry points and specific methods for integrating map making and map application into deep learning are discussed respectively.
This study aimed to analyze government policies in education during the Covid-19 pandemic and how teachers exercised discretion in dealing with limitations in policy implementation. This research work used the desk review method to obtain data on government policies in the field of education during the Covid-19 pandemic. In addition, interviews were conducted to determine the discretion taken in implementing the learning-from-home policy. There were three learning models during the pandemic: face-to-face learning in turns (shifts), online learning, and home visits. Online learning policies did not work well at the pandemic’s beginning due to limited infrastructure and human resources. To overcome various limitations, the government provided internet quota assistance and curriculum adjustments and improved online learning infrastructure. The discretion taken by the teachers in implementing the learning-from-home policy was very dependent on the student’s condition and the availability of the internet network. The practical implication of this research is that street-level bureaucrats need to pay attention to discretionary standards when deciding to provide satisfaction to the people they serve.
To save patients’ lives, it is important to go for an early diagnosis of intracranial hemorrhage (ICH). For diagnosing ICH, the widely used method is non-contrast computed tomography (NCCT). It has fast acquisition and availability in medical emergency facilities. To predict hematoma progression and mortality, it is important to estimate the volume of intracranial hemorrhage. Radiologists can manually delineate the ICH region to estimate the hematoma volume. This process takes time and undergoes inter-rater variability. In this research paper, we develop and discuss a fine segmentation model and a coarse model for intracranial hemorrhage segmentations. Basically, two different models are discussed for intracranial hemorrhage segmentation. We trained a 2DDensNet in the first model for coarse segmentation and cascaded the coarse segmentation mask output in the fine segmentation model along with input training samples. A nnUNet model is trained in the second fine stage and will use the segmentation labels of the coarse model with true labels for intracranial hemorrhage segmentation. An optimal performance for intracranial hemorrhage segmentation solution is obtained.
The SMARTER model, an innovative educational framework, is designed for blended learning environments, seamlessly integrating both online and face-to-face instructional components. Employing a flipped classroom methodology, this model ensures an equitable division between online and traditional classroom interactions, aiming to cultivate a dynamic and collaborative learning atmosphere. This research focused on developing and rigorously evaluating the SMARTER model’s validity, practicality, and effectiveness. Adopting a research and development (R&D) approach informed by the methodologies of Borg, Gall, and Gall, this study utilized a mixed-methods strategy. This encompassed a robust validation process by experts in design, content, and media, alongside an empirical analysis of the model’s application in actual educational settings. The aim was to comprehensively assess its effectiveness and practicality. The findings from this study affirm the SMARTER model’s validity, practicality, and effectiveness in improving students’ information literacy skills. Comparative analysis between a control group, taught using a traditional expository approach, and an experimental group, educated under the SMARTER model, highlighted significant improvements in the latter group. This effectiveness underscores the model’s capacity not only to efficiently deliver content but also to actively engage students in a collaborative learning process. The results advocate for the model’s potential broader adoption and adaptation across similar educational contexts. They also establish a foundation for future research aimed at exploring the SMARTER model’s scalability and adaptability across diverse instructional environments.
Data literacy is an important skill for students in studying physics. With data literacy, students have the ability to collect, analyze and interpret data as well as construct data-based scientific explanations and reasoning. However, students’ ability to data literacy is still not satisfactory. On the other hand, various learning strategies still provide opportunities to design learning models that are more directed at data literacy skills. For this reason, in this research a physics learning model was developed that is oriented towards physics objects represented in various modes and is called the Object-Oriented Physics Learning (OOPL) Model. The learning model was developed through several stages and based on the results of the validity analysis; it shows that the OOPL model is included in the valid category. The OOPL model fulfils the elements of content validity and construct validity. The validity of the OOPL model and its implications are discussed in detail in the discussion.
Copyright © by EnPress Publisher. All rights reserved.