To address the problem that the imaging inversion method based on a single model in integrated aperture imaging is difficult to effectively correct model errors and perform accurate image reconstruction, a dual-model (DM)-based integrated aperture imaging inversion method is proposed for correcting the parametric errors of the inversion model and performing highly accurate millimeter-wave image reconstruction of the target scene. In view of the different parameter sensitivities of the Fourier transform (MFFT) model and the G-matrix (GM) model, the proposed DM method first corrects the imaging parameters with errors accurately by comparing the reconstruction errors of the two models; then recon-structs a high-precision target image based on the accurate GM model with the help of an improved regularization method. It is proved by simulation experiments that the proposed DM method can effectively correct the parameter errors of the imaging model and reconstruct the target scene with high accuracy in millimeter wave images compared with the traditional single-model imaging method.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Cardiovascular imaging analysis is a useful tool for the diagnosis, treatment and monitoring of cardiovascular diseases. Imaging techniques allow non-invasive quantitative assessment of cardiac function, providing morphological, functional and dynamic information. Recent technological advances in ultrasound have made it possible to improve the quality of patient treatment, thanks to the use of modern image processing and analysis techniques. However, the acquisition of these dynamic three-dimensional (3D) images leads to the production of large volumes of data to process, from which cardiac structures must be extracted and analyzed during the cardiac cycle. Extraction, three-dimensional visualization, and qualification tools are currently used within the clinical routine, but unfortunately require significant interaction with the physician. These elements justify the development of new efficient and robust algorithms for structure extraction and cardiac motion estimation from three-dimensional images. As a result, making available to clinicians new means to accurately assess cardiac anatomy and function from three-dimensional images represents a definite advance in the investigation of a complete description of the heart from a single examination. The aim of this article is to show what advances have been made in 3D cardiac imaging by ultrasound and additionally to observe which areas have been studied under this imaging modality.
This paper mainly uses the idea of pedigree clustering analysis, gray prediction and principal component analysis. The clustering analysis model, GM (1,1) model and principal component analysis model were established by using SPSS software to analyze the correlation matrices and principal component analysis. MATLAB software was used to calculate the correlation matrices. In January, The difference in price changes of major food prices in cities is calculated, and had forecasted the various food prices in June 2016. For the first issue, the main food is classified and the data are processed. After that, the SPSS software is used to classify the 27 kinds of food into four categories by using the pedigree cluster analysis model and the system clustering. The four categories are made by EXCEL. The price of food changes over time with a line chart that analyzes the characteristics of food price volatility. For the second issue, the gray prediction model is established based on the food classification of each kind of food price. First, the original data is cumulated, test and processed, so that the data have a strong regularity, and then establish a gray differential equation, and then use MATLAB software to solve the model. And then the residual test and post-check test, have C <0.35, the prediction accuracy is better. Finally, predict the price trend in June 2016 through the function. For the third issue, we analyzed the main components of 27 kinds of food types by celery, octopus, chicken (white striped chicken), duck and Chinese cabbage by using the data of principal given and analyzed by principal component analysis. It can be detected by measuring a small amount of food, this predict CPI value relatively accurate. Through the study of the characteristics of the region, select Shanghai and Shenyang, by looking for the relevant CPI and food price data, using spss software, principal component analysis, the impact of the CPI on several types of food, and then calculated by matlab algorithm weight, and then the data obtained by the analysis and comparison, different regions should be selected for different types of food for testing.
Asian Infrastructure Investment Bank’s president Mr. Jin Liqun shares with JIPD Editor-in-Chief, Dr. Gu Qingyang, his passion for infrastructure finance, as he reflects upon his goal of steering an environmentally friend and corruption-free AIIB toward building social-impacting infrastructure across Asia.
From governmental departments to international financial institutes, Mr. Jin Liqun has undertaken almost every essential role in finance. With his vast experience across the private and public sectors, particularly in multilateral development banks, Mr. Jin Liqun currently serves as Asian Infrastructure Investment Bank (AIIB)’s first President since its founding in 2016, following a stint as Secretary-General of the Multilateral Interim Secretariat created to establish the bank. Beginning from his two decades of governmental experience at the Chinese Ministry of Finance, rising from the rank of Deputy Director General to Vice Minister, Mr. Jin was then called to serve as Vice President, and then Ranking Vice President, of the Asian Development Bank, and later as Alternate Executive Director for China at the World Bank and at the Global Environment Facility. Mr. Jin had also served as Chairman of China International Capital Corporation Ltd., China’s first joint-venture investment bank, in addition to serving as Chairman of the Supervisory Board of the sovereign wealth fund China Investment Corporation and as Chairman of the International Forum of Sovereign Wealth Funds.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
Copyright © by EnPress Publisher. All rights reserved.