With the development and reform of education, the cultivation of core competencies for normal school students is receiving increasing attention. This article analyzes the connotation of the core literacy of preschool education teacher students, the difficulties faced in cultivating core literacy, and explores how to use flipped classrooms to enhance the core literacy of preschool education teacher students.
The SMARTER model, an innovative educational framework, is designed for blended learning environments, seamlessly integrating both online and face-to-face instructional components. Employing a flipped classroom methodology, this model ensures an equitable division between online and traditional classroom interactions, aiming to cultivate a dynamic and collaborative learning atmosphere. This research focused on developing and rigorously evaluating the SMARTER model’s validity, practicality, and effectiveness. Adopting a research and development (R&D) approach informed by the methodologies of Borg, Gall, and Gall, this study utilized a mixed-methods strategy. This encompassed a robust validation process by experts in design, content, and media, alongside an empirical analysis of the model’s application in actual educational settings. The aim was to comprehensively assess its effectiveness and practicality. The findings from this study affirm the SMARTER model’s validity, practicality, and effectiveness in improving students’ information literacy skills. Comparative analysis between a control group, taught using a traditional expository approach, and an experimental group, educated under the SMARTER model, highlighted significant improvements in the latter group. This effectiveness underscores the model’s capacity not only to efficiently deliver content but also to actively engage students in a collaborative learning process. The results advocate for the model’s potential broader adoption and adaptation across similar educational contexts. They also establish a foundation for future research aimed at exploring the SMARTER model’s scalability and adaptability across diverse instructional environments.
The flipped classroom (FC) model has long brought significant benefits to higher education, secondary, and elementary education, particularly in improving the quality and effectiveness of learning. However, the implementation of FC model to support elementary students in developing self-learning skills (autonomous learning, independent study, self-directed learning) through technology still faces numerous challenges in Vietnam due to various influencing factors. Data for the study were collected through direct questionnaires and online surveys from 517 teachers at elementary schools in Da Nang, Vietnam. Based on SEM analysis, the study identified factors such as perceived usefulness, accessibility, desire, teaching style, and facilitating conditions. The research findings indicate that factors like the perceived effectiveness of the model, teaching style, and facilitating conditions have a positive correlation with the decision to adopt the FC model. Therefore, to encourage the use of the FC model in teaching, it is essential to raise awareness of the model’s effectiveness, improve teaching styles, and create favorable conditions for implementation.
This research focused on the design and implementation of the flipped classroom approach for higher mathematics courses in medical colleges. Out of 120 students, 60 were assigned to the experimental group and 60 to the control group. In the continuous assessment, which included homework and quizzes, the average score of the experimental group was 85.5 ± 5.5, while that of the control group was 75.2 ± 8.1 (P < 0.05). For the final examination, the average score in the experimental group was 88.3 ± 6.2, compared to 78.1 ± 7.3 in the control group (P < 0.01). The participation rate of students in the experimental group was 80.5%, significantly higher than the 50.3% in the control group (P < 0.001). Regarding autonomous learning ability, the experimental group spent an average of 3.2 hours per week on self-study, compared to 1.5 hours in the control group (P < 0.005). Other potential evaluation indicators could involve the percentage of students achieving high scores (90% or above) in problem-solving tasks (25.8% in the experimental group vs. 10.3% in the control group, P < 0.05), and the improvement in retention of key concepts after one month (70.2% in the experimental group vs. 40.5% in the control group, P < 0.01). In conclusion, the flipped classroom approach holds substantial promise in elevating the learning efficacy of higher mathematics courses within medical colleges, offering valuable insights for educational innovation and improvement.
The COVID-19 pandemic has shifted education from traditional in-person classes to remote, online-dependent learning, often resulting in reduced learning effectiveness and satisfaction due to limited face-to-face interaction. To address these challenges, interactive teaching strategies, such as the flipped classroom approach, have gained attention. The flipped classroom model emphasizes individual preparation outside class and collaborative learning during class time, relying heavily on in-person interactions. To adapt this method to remote learning, the Remote Flipped Classroom (RFC) integrates the flipped classroom approach with online learning, allowing flexibility while maintaining interactive opportunities. RFC has incorporated short films as teaching tools, leveraging their ability to contextualize knowledge and cater to the preferences of visually-driven younger learners. However, research on the effectiveness of RFC with films remains limited, particularly in fields like nursing education, where practical engagement is crucial. This article shares the practical experience of applying RFC with films in a nursing education context. Positive feedback was observed, though many students still expressed a preference for in-person classes. These insights suggest that strategies like RFC with films could be valuable in maintaining engagement and learning efficiency in remote classrooms.
Copyright © by EnPress Publisher. All rights reserved.