The development of the maize agribusiness system is highly dependent on the role of social capital in facilitating interaction among actors in the chain of activities ranging from the provision of farm supplies to marketing. Therefore, this research aimed to characterize the key elements of social capital specifically bonding, bridging, and linking, as well as to demonstrate their respective roles. Data were collected from farmers and non-farmers actors engaged in various activities in the maize agribusiness system. The data obtained were processed using ATLAS Ti, applying open, axial, and selective coding techniques. The results showed the roles played by bonding, bridging, and linking social capital in the interaction between farmers and multiple actors in activities such as providing farm supplies, farming production, harvesting, post-harvest, and marketing. The combination of these social capital forms acted as the glue and wires that facilitated access to resources, collective decision-making, and reduced transaction costs. These results have theoretical implications, suggesting that bonding, bridging, and linking should be combined with the appropriate role composition for each activity in the agribusiness system.
The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
The maize commodity is of strategic significance to the South African economy as it is a stable commodity and therefore a key factor for food security. In recent times climate change has impacted on the productivity of this commodity and this has impacted trade negatively. This paper explores the intricate relationship between climatic factors and trade performance for the South African maize. Secondary annual time series data spanning 2001 to 2023, was sourced from an abstract from Department of Agriculture, Land Reform and Rural Development (DALRRD) and World Bank’s Climate Change Knowledge Portal. Autoregressive Distributed Lag (ARDL) cointegration technique was used as an empirical model to assess the long-term and short-term relationships between explanatory variables and the dependent variable. Results of the ARDL model show that, average annual rainfall (β = 2.184, p = 0.056), fertilizer consumption (β = 1.919, p = 0.036), gross value of production (β = 1.279 , p = 0.006) and average annual surface temperature (β = −0.650, p = 0.991) and change in temperature for previous years, (β = −0.650, p = 0.991) and the effects towards coefficient change for export volumes, (β = 0.669, p = 0.0007). In overall, as a recommendation, South African policymakers should consider these findings when developing strategies to mitigate the impacts of some of these climatic factors and implementing adaptive strategies for maize producers.
Copyright © by EnPress Publisher. All rights reserved.