Food safety in supply chains remains a critical concern due to the complexity of global distribution networks. This study develops a conceptual framework to evaluate how food safety risks influence supply chain performance through predictive analytics. The framework identifies and minimizes food safety risks before they cause serious problems. The study examines the impact of food safety practices, supply chain transparency, and technological integration on adopting predictive analytics. To illustrate the complex dynamics of food safety and supply chain performance, the study presents supply chain transparency, technological integration, and food safety practices and procedures as independent variables and predictive analytics as a mediator. The results show that supply chain managers’ capacity to anticipate and control risks related to food safety can be improved by predictive analytics, leading to safer food production and distribution methods. The research recommends that businesses create scalable cloud-based predictive model solutions, combine data sources, and employ cutting-edge AI and machine learning tools. Companies should also note that strong, data-driven approaches to food safety require cooperative data sharing, regulatory compliance, training initiatives and ongoing improvement.
This study uses the annual financial data of Chinese A-share listed firms from 2010 to 2020 to investigate the relationship between multiple large shareholders (MLS) and earnings management (EM). After analyzing the samples using the Ordinary Least Squares (OLS) model and endogenous switching regression (ESR) model, the empirical results show that the presence of MLS can increase corporate EM activities and the MLS have a significantly positive effect on EM in both the treatment and control groups. In addition, this conclusion still holds after conducting multiple robustness tests. The cross-section analysis shows that the external audit supervision quality, institutional shareholders, and the uncertainty of the external economic environment have significant impacts on the baseline model results. Lastly, mediation effect analysis shows that the presence of MLS increases the corporate operating risk through EM activities. The conclusions of this paper are critical for policymakers to supervise China’s capital market, improve the level of corporate governance of China’s listed firms, and further promote reform of ownership structure.
With the rapid increase in electric bicycle (e-bikes) use, the rate of associated traffic accidents has also escalated. Prior studies have extensively examined e-bike riders’ injury risks, yet there is a limited understanding of how their behavior contributes to these accidents. This study aims to explore the relationship between e-bike riders’ risk-taking behaviors and the incidence of traffic accidents, and to propose targeted safety measures based on these insights. Utilizing a mixed-methods approach, this research integrates quantitative data from traffic accident reports and qualitative observations from naturalistic studies. The study employs a binary logistic regression model to analyze risk factors and uses observational data to substantiate the model findings. The analysis reveals that assertive driving behaviors among e-bike riders, such as running red lights and speeding, significantly contribute to the high rate of accidents. Moreover, the lack of protective gear and inadequate safety training are identified as critical factors increasing the risk of severe injuries. The study concludes that comprehensive policy interventions, including stricter enforcement of traffic laws and mandatory safety training for e-bike riders, are essential to mitigate the risks associated with e-bike use. The findings advocate for an integrated approach to urban traffic management that enhances the safety of all road users, particularly vulnerable e-bike riders.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
QR code transforms the way retailers offer their shopping experiences in the current context. In response, various retailers adopted innovative approaches such as QR code-based applications to attract their consumers. A QR code-based virtual supermarket refers to a space where goods or services are traded in a virtual space using a smart app-based QR code. To fully understand the opportunities of this type of supermarket applying QR-code technology, initial research is required to assess consumers’ use intention. This study has examined the antecedents of the adoption of QR code-based virtual supermarket among Vietnam consumers using the expanded Technology Acceptance Model (TAM) and explored the moderating effect of perceived risk on the relationship between attitude and consumers’ intention to use QR code-based virtual supermarket. A questionnaire was used to collect data from a sample of 335 consumers in Vietnam. The findings revealed that the antecedents are effective in predicting consumers’ attitudes and intentions toward QR code-based virtual supermarket adoption. The results showed the negative moderation effects of perceived risk for the effect of attitude on consumers intention. In addition, practical implications are supported for the application of new shopping technology and are likely to stimulate further research in the area of virtual supermarket shopping.
Copyright © by EnPress Publisher. All rights reserved.