This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
The aim of this paper is to introduce a research project dedicated to identifying gaps in green skills by using the labor market intelligence. Labor Market Intelligence (LMI). The method is primarily descriptive and conceptual, as the authors of this paper intend to develop a theoretical background and justify the planned research using Natural Language Processing (NLP) techniques. This research highlights the role of LMI as a tool for analysis of the green skills gaps and related imbalances. Due to the growing demand for eco-friendly solutions, there arises a need for the identification of green skills. As societies shift towards eco-friendly economic models, changes lead to emerging skill gaps. This study provides an alternative approach for identification of these gaps based on analysis of online job vacancies and online profiles of job seekers. These gaps are contextualized within roles that businesses find difficult to fill due to a lack of requisite green skills. The idea of skill intelligence is to blend various sources of information in order to overcome the information gap related to the identification of supply side factors, demand side factors and their interactions. The outcomes emphasize the urgency of policy interventions, especially in anticipating roles emerging from the green transition, necessitating educational reforms. As the green movement redefines the economy, proactive strategies to bridge green skill gaps are essential. This research offers a blueprint for policymakers and educators to bolster the workforce in readiness for a sustainable future. This article proposes a solution to the quantitative and qualitative mismatches in the green labor market.
This study examines the interplay between eco-friendly behaviour (Eco-FB) at multiple systemic levels, addressing the complexity beyond the scope of single-level models. We propose a comprehensive model incorporating traditional individual, organizational, and relational level concepts and a situational construct exemplified by Bali Island Recognition. This model was tested in Bali Island’s tourism firms through online and offline surveys of 500 tourism-related employees and their gateway communities across Bali Island. The research investigates the differences in pro-environmental conduct between two destinations’ social accountability (DSA) groups categorized as high and low DSA clusters. It further explores how ecological value, green intelligence, DSA, and sustainable travel affect public and private Eco-FB. The findings indicate that green intelligence has a strong positive connection with Eco-FB, and high DSA significantly impacts eco-friendly behaviour. This research enhances our understanding of Eco-FB by presenting a multilevel model incorporating the Bali Island factor, revealing distinctive impact mechanisms for both public and private Eco-FB.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
Copyright © by EnPress Publisher. All rights reserved.