This investigation derives formulas to predict the mixed convective surface conductance of a flat isotropic surface roughness having a convex perimeter in a Newtonian fluid with a steady forced flow in the plane of that roughness. Heat transfer measurements of a 30.5 cm square rough plate with forced air velocities between 0.1 m/s and 2.5 m/s were made by the present apparatus in two inclined and all five orthogonal orientations. The present work’s formulas are compared with 104 measurements in twelve data-sets. The twelve data-sets have root-mean-square relative error (RMSRE) values between 1.3% and 4% relative to the present theory. The present work’sformulas are also compared with 78 measurements in 28 data-sets on five vertical rough surfaces in horizontal flow from prior work. The five stucco data-sets have RMSRE values between 2.5% and 6.5%; the other data-sets have RMSRE values between 0.2% and 5%.
Zinc oxide (ZnO) hollow spheres are gaining attention due to their exceptional properties and potential applications in various fields. This study investigates the impact of different zinc precursors Zinc Chloride (ZnCl2), Zinc Nitrate [Zn(NO3)2], and Zinc Acetate [Zn(CH3COO)2] on the hydrothermal synthesis of ZnO hollow spheres. A comprehensive set of characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis, was utilized to assess the structural and morphological features of the synthesized materials. Our findings demonstrate that all samples exhibit a high degree of crystallinity with a wurtzite structure, and crystallite sizes range between 34 to 91 nm. Among the different precursors, ZnO derived from Zinc Nitrate showed markedly higher porosity and a well-defined mesoporous structure than those obtained from Zinc Acetate and Zinc Chloride. This research underscores the significance of precursor selection in optimizing the properties of ZnO hollow spheres, ultimately contributing to advancements in the design and application of ZnO-based nanomaterials.
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
To investigate the effect of the location of vacuum insulation panels on the thermal insulation performance of marine reefer containers, a 20ft mechanical refrigeration reefer container was employed in this paper, and the physical and mathematical models of three kinds of envelopes composed of vacuum insulation panels (VIP) and polyurethane foam (PU) were numerically established. The heat transfer of three types of envelopes under unsteady conditions was simulated. In order to be able to analyze theoretically, the Rasch transform is used to analyze the thermal inertia magnitude by calculating the thermal transfer response frequency and the thermal transfer response coefficient for each model, and the results are compared with the simulation results. The results implied that the insulation performance of VIP external insulation is the best. The delay times of each model obtained from the simulation results are 0.81 h, 1.45 h, 2.03 h, and 2.24 h, while the attenuation ratios are 8.93, 20.39, 20.62, and 21.78, respectively; the delay times calculated from the theoretical analysis are 0.78 h, 1.43 h, 1.99 h, and 2.20 h, respectively; and the attenuation ratios are 8.84, 20.31, 20.55, and 21.72, respectively. The carbon reduction effect of VIP external insulation is also the best. The most considerable carbon reduction is 3.65894 kg less than the traditional PU structure within 24 h. The research has a guiding significance for the research and progress of the new generation of energy-saving reefer containers and the insulation design of the envelope of refrigerated transportation equipment.
Global energy agencies and commissions report a sharp increase in energy demand based on commercial, industrial, and residential activities. At this point, we need energy-efficient and high-performance systems to maintain a sustainable environment. More than 30% of the generated electricity has been consumed by HVAC-R units, and heat exchangers are the main components affecting the overall performance. This study combines experimental measurements, numerical investigations, and ANN-aided optimization studies to determine the optimal operating conditions of an industrial shell and tube heat exchanger system. The cold/hot stream temperature level is varied between 10 ℃ and 50 ℃ during the experiments and numerical investigations. Furthermore, the flow rates are altered in a range of 50–500 L/h to investigate the thermal and hydraulic performance under laminar and turbulent regime conditions. The experimental and numerical results indicate that U-tube bundles dominantly affect the total pumping power; therefore, the energy consumption experienced at the cold side is about ten times greater the one at the hot side. Once the required data sets are gathered via the experiments and numerical investigations, ANN-aided stochastic optimization algorithms detected the C10H50 scenario as the optimal operating case when the cold and hot stream flow rates are at 100 L/h and 500 L/h, respectively.
Copyright © by EnPress Publisher. All rights reserved.