Hybrid learning (HL) has become a significant part of the learning style for the higher education sector in the Sri Lankan context amidst the COVID-19 pandemic and the subsequent economic crisis. This research study aims to discover the effectiveness of hybrid learning (EHL) practices in enhancing undergraduates’ outcomes in Sri Lankan Higher Educational Institutions (HEIs) management faculties. The data for the study were gathered through an online questionnaire survey, which received 379 responses. The questionnaire contained 38 questions under four sections covering independent variables, excluding demographic questions. The results indicate that hybrid learner attitude, interaction, and benefits of hybrid learning positively impact the effectiveness of hybrid learning. The results remain consistent even after controlling for socio-demographic factors and focusing only on students employed during their higher education. The study concluded that employed students have a higher preference for the effectiveness of hybrid learning concepts, and the benefits of hybrid learning play a crucial role in enhancing the effectiveness among undergraduates. The study analyzes COVID-19’s impact on higher education, proposing hybrid learning and regulatory frameworks based on pandemic experiences while stressing the benefits of remote teaching and research.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
In order to seek management alternatives for anthracnose caused by the fungus Colletotrichum gloeosporioides in blackberry (Rubus glaucus Benth.), at the Tibaitatá Research Center of the Colombian Agricultural Research Corporation AGROSAVIA (formerly CORPOICA), an experiment was conducted to evaluate the effect of the application of the major elements nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) on infections of the fungus C. gloeosporioides strain-52. For this purpose, a randomized complete block design was used with an arrangement of treatments in an orthogonal central composite design. To evaluate the relationship of fertilization levels and disease severity, an artificial inoculation was made on thorny blackberry stems using 0.5 cm mycelial discs at a concentration of 9.53 × 104 conidia. Observations consisted of: disease severity (S), incubation period (IP) and rate of development (r). Data analysis was done by the cluster method on the severity variable, a Pearson correlation analysis between variables, as well as a regression to estimate the effect of nutrients applied on the severity of C. gloeosporioides strain-52. The treatments were concentrated in four groups with the ranges (in parentheses) S (15.9% and 91.8%), PI (9 and 15.3) and Tr (0.0254 and 0.0468). A positive and significant correlation was observed between S and r (P < 0.001) and a negative correlation between PI with S and r (P < 0.001). By means of regression analysis, a linear model was generated that showed a reduction in disease severity with increasing N dose and an increase with the levels of P and Ca applied.
The structure, thermodynamic stability, ionization potential (IP) and electron affinity (EA) energy level difference (Eg) and tension of lowest unoccupied orbit (LUMO) and highest occupied orbit (HOMO) of armchair single wall carbon nanotubes (C-NTs), BN hybrid carbon nanotubes (BC2N-NTs) and all BN nanotubes (BN-NTs) were systematically studied with AM1 method in this paper. Calculation results show that when n value is constant, (n, n) C-NTs (n = 3,4,5,6) has the largest diameter and BN-NTs has the smallest diameter; (n, n) the values of Eg (HOMO-LUMO) and n of C-NTs and BC2N-NTs are related; POAV analysis shows that different hybrid atoms have different contributions to the hybrid mode of nanotube atoms and the tension of nanotubes.
Using a Global Trade Analysis Project (GTAP) model, and China as the base for analytical comparison, this paper shows that there are significant economic benefits to China and the participating countries along all six Belt and Road Initiative (BRI) economic corridors. However, to maximize these benefits, the social and environmental risks need to be well managed. The analysis shows a clear sequencing in terms of priority corridors. Two corridors have minimal investments and immediate returns, two corridors have significant investments with huge returns, and two corridors have high investments with lower returns. Overall, the paper demonstrates that to ensure the sustainability of any BRI corridor development, there is a need to consider its costs and benefits from the economic, social and environmental perspectives.
Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.
Copyright © by EnPress Publisher. All rights reserved.