2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
In Costa Rica, there is no explicit recommendation from the competent authorities for the use of a specific phantom, so experts must explore what suppliers offer, among which the Normi Mam Digital phantom from PTW stands out. This article presents the results of the dosimetry and image quality control applied to the Normi Mam Digital phantom to validate it as equipment that complies with the recommendations of the Human Health Series No. 17. The results obtained were satisfactory, proving that the equipment complies with the tolerances recommended by international health bodies.
Introduction: Given the heterogeneous nature and inherent complexity of forensic medical expertise, the expert (medical professional or related areas) must make the best use of the technical and technological tools at his disposal. Imaging, referring to the set of techniques that allow obtaining images of the human body for clinical or scientific purposes, in any of its techniques, is a powerful support tool for establishing facts or technical evidence in the legal field. Objective: To analyze the use of magnetic resonance and computed tomography in postmortem diagnosis. Methodology: information was searched in the databases PubMed, Science Direct, Springer Journal and in the search engine Google Scholar, using the terms “X-Ray Computed Tomography”, “Magnetic Resonance Spectroscopy”, “Autopsy” and “Forensic Medicine” published in the period 2008–2015. Results: MRI is useful for the detailed study of soft tissues and organs, while computed tomography allows the identification of fractures, calcifications, implants and trauma. Conclusions: In the reports found in the literature search, regarding the use of nuclear magnetic resonance and computed tomography in postmortem cases, named by the genesis of the trauma, correlation was found between the use of imaging and the correct expert diagnosis at autopsy.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
This article delves into the controversial practice of utilizing a student’s first language (L1) as a teaching resource in second language (L2) learning environments. Initially, strategies such as code-switching/code-mixing and translanguaging were considered signs of poor linguistic ability. There was a strong push towards using only the target language in foreign language education, aiming to limit the first language’s interference and foster a deeper immersion in the new language. However, later research has shown the benefits of incorporating the first language in bilingual education and language learning processes. It’s argued that a student’s knowledge in their native language can actually support their comprehension of a second language, suggesting that transferring certain linguistic or conceptual knowledge from L1 to L2 can be advantageous. This perspective encourages the strategic use of this knowledge transfer in teaching methods. Moreover, the text points to positive results from various studies on the positive impact of L1 usage in L2 classrooms. These insights pave the way for further exploration into the application of the first language in adult English as a Second Language (ESL)/English as a Foreign Language (EFL) education, particularly regarding providing corrective feedback.
Copyright © by EnPress Publisher. All rights reserved.