This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
African countries have shown interest in developing the legal framework for electronic payment as part of digital law. The article aims to analyze the role of the legal framework for electronic payment in the field of digital economy. It relies on a legal methodology through analyzing legal texts related to electronic payment. It also relies on the comparative and descriptive approaches whenever there is a scientific necessity. The article concluded that the legal framework plays an important role in the field of digital economy. This framework appears in the general rules of civil and commercial laws or through the laws of money and credit. Other laws also play a complementary role, such as criminal law and personal data protection laws.
Based on digital technology, the digital economy has typical characteristics of high efficiency, greenness, intelligence, innovation, strong penetration and so on, which can promote the sporting goods manufacturing industry (SGMI) to realize the goal of green development. This study selects panel data from 30 provinces in China over the period of 2011 to 2022. And the green total factor productivity of the sporting goods manufacturing industry (SGTFP) is used to reflect the green development of SGMI. The level of digital economy development (DIG) and the SGTFP are measured by using the entropy method and the Super-SBM model with undesirable outputs. Based on the method of coupling coordination degree model, the coordinated development degree of DIG and SGTFP is analyzed first. Then, by making use of the fixed effect model, intermediary effect model and spatial Durbin model, the influence of DIG on the green development of SGMI and its mechanism are empirically studied. The results show that DIG, SGTFP and the degree of their coupling and coordination are generally on the rise. The benchmark regression results show that the coefficient of DIG on SGTFP is 0.213; that is, the digital economy can significantly promote the improvement of green development in SGMI. According to the analysis of the spatial Durbin model, the impact of the digital economy on SGTFP has a certain spatial spillover, that is, the development of digital economy in the region will have a certain promoting effect on the green development of SGMI in the surrounding region. The intermediary effect model analyzes the influence mechanism and finds that the digital economy mainly boosts SGTFP through green innovation technology and energy consumption structure.
With the advancement of the green economy, the labor market is experiencing the emergence of new employment forms, positions, and competencies. This arises from the special relationship between the green job market and the transforming energy sector. On the other hand, the energy sector’s influence on the green labor market and the creation of green jobs is particularly significant. It is because, the energy sector is one of the fundamental foundations of any country’s economy and impacts its other sectors. Key components of this influence include green employment and green self-employment. The purpose of this study is to identify elements of the green labor market within the context of the green economy and the energy sector. The methodology employs a hybrid literature review, combining a systematic literature review facilitated by the use of VOSviewer software. Exploring the Scopus database enabled the identification of keywords directly related to the green economy and the energy sector. Within these identified keywords, elements of the green labor market were searched. The main result is the empirical identification of the crucial term ‘green skills,’ which links elements of the green labor market, as presented in bibliometric maps. The research results indicate a gap in the form of insufficient discussion on green self-employment within the energy sector. Aspects of green jobs and elements of the green labor market are prominently featured in current research. However, there is a notable gap in the literature regarding green self-employment, presenting promising avenues for further research.
Copyright © by EnPress Publisher. All rights reserved.