Using generative artificial intelligence systems in the classroom for law case analysis teaching can enhance the efficiency and accuracy of knowledge delivery. They can create interactive learning environments that are appropriate, immersive, integrated, and evocative, guiding students to conduct case analysis from interdisciplinary and cross-cultural perspectives. This teaching method not only increases students’ interest and participation in learning but also helps cultivate their interdisciplinary thinking and global vision. However, the application of generative artificial intelligence systems in legal education also faces some challenges and issues. If students excessively rely on these systems, their ability to think independently, make judgments, and innovate may be weakened, leading to over-trust in machines and reinforcement of value biases. To address these challenges and issues, legal education should focus more on cultivating students’ questioning skills, self-analysis abilities, critical thinking, basic legal literacy, digital skills, and humanistic spirit. This will enable students to respond to the challenges brought by generative artificial intelligence and ensure their comprehensive development in the new era.
China’s graduate quality management system is designed to ensure that students possess the necessary skills, knowledge, and competencies for future success. This system is rooted in China’s ambitious educational reforms aimed at cultivating a highly skilled workforce to drive economic growth and innovation. Effective graduate quality management significantly impacts employment levels, training models, and national policy formulation. This study investigates the quality management approaches of 56 vocational institutions in Yunnan Province using a 5-level questionnaire and a quantitative research methodology. A sample of 556 individuals was selected through stratified random sampling. Exploratory factor analysis identified five primary components of the quality management model: College graduate quality (mean = 4.56, SD = 0.49), teaching quality (mean = 4.39, SD = 0.42), hardware environment (mean = 4.38, SD = 0.44), social support (mean = 4.37, SD = 0.42), and job satisfaction (mean = 4.38, SD = 0.42). College graduate quality and teaching quality were the most influential factors, while hardware environment, social support, and job satisfaction had lesser impacts.
Copyright © by EnPress Publisher. All rights reserved.