This study examines the determinants of inflation in Tunisia from 1998 to 2023, with a particular focus on the role of fiscal policy. The study analyzes the long-run and short-run relationships between inflation and key macroeconomic variables, including government expenditure, government revenue, money supply, balance of trade, and budget deficits using ARDL model. The empirical findings reveal that budget deficits have a significant and positive impact on inflation, underscoring the critical role of fiscal imbalances in driving price instability. In contrast, government expenditure, government revenue, money supply, and balance of trade do not exhibit statistically significant long-term effects on inflation. The results highlight the importance of fiscal discipline and effective coordination between fiscal and monetary policies to achieve price stability. These findings provide valuable insights for policymakers in Tunisia and other developing economies facing similar inflationary pressures, emphasizing the need for prudent fiscal management and structural reforms to mitigate inflation volatility and ensure macroeconomic stability.
This study addresses the critical issue of employee turnover intention within Malaysia’s manufacturing sector, focusing on the semiconductor industry, a pivotal component of the inclusive economy growth. The research aims to unveil the determinants of employee turnover intentions through a comprehensive analysis encompassing compensation, career development, work-life balance, and leadership style. Utilizing Herzberg’s Two-Factor Theory as a theoretical framework, the study hypothesizes that motivators (e.g., career development, recognition) and hygiene factors (e.g., compensation, working conditions) significantly influence employees’ intentions to leave. The quantitative research methodology employs a descriptive correlation design to investigate the relationships between the specified variables and turnover intention. Data was collected from executives and managers in northern Malaysia’s semiconductor industry, revealing that compensation, rewards, and work-life balance are significant predictors of turnover intention. At the same time, career development and transformational leadership style show no substantial impact. The findings suggest that manufacturing firms must reevaluate their compensation strategies, foster a conducive work-life balance, and consider a diverse workforce’s evolving needs and expectations to mitigate turnover rates. This study contributes to academic discourse by filling gaps in current literature and offers practical implications for industry stakeholders aiming to enhance employee retention and organizational competitiveness.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
The present study attempted to assess the impact of fundamental ratios on the share prices of selected telecommunication companies in India. India has dramatically expanded over the past ten years to become the second-biggest telecoms market worldwide, with 1.17 billion users. The Indian telecom industry has proliferated thanks in part to the government of India’s liberal and reformist policies and strong customer demand. It has become a lucrative investment sector for investors due to its recent and prospective growth. Data on 13 telecom firms indexed in the S&P BSE telecommunication index from 2013 to 2022 were taken from companies’ annual reports, the BSE website (Bombay Stock Exchange), and other secondary sources. Six firm-specific fundamental factors viz. Debt to Equity ratio (D/E), Current ratio (CR), Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to earnings ratio (P/E), Return on equity (ROE), and three country-specific fundamental factors viz. Gross Domestic Product, Inflation rate, and S&P BSE Sensex return were considered. Fixed effect panel regression through Generalized Least Square (GLS) model was performed to find inferences. Debt Equity ratio and Inflation rate were found to impact share price negatively. Conversely, the Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to Earnings ratio (P/E), and Return on Equity (ROE) positively impacted selected companies’ share prices. The study results will benefit individual & institutional investors in formulating their investment and portfolio diversification strategies for gaining a high effective rate of return on their investments.
Nationwide integration of AI into the contemporary art sector has taken place since government AI regulations in 2023 to promote AI use. China’s AI integration into industry is ‘ahead’ of other countries, meaning that other countries can learn from these creative professionals. Consequently, contemporary visual artists have devised arts-led sustainable AI solutions to overcome global AI concerns. They are now putting these solutions into practice to maintain their jobs, arts forms, and industry. This paper draws on 30 interviews with contemporary visual artists, and a survey with 118 professional artists from across China between 2023 and 2024. Findings show that 87% use AI and 76% say AI is useful and they will continue to use AI into the future. Findings show professionals have had time to find DIY, bottom-up solutions to AI concerns, including (1) building strong authorship practices, identity, and brand, (2) showing human creativity and inner thinking, (3) gaining a balanced independent position with AI. They want AI regulations to liberalise and promote AI use so they can freely experiment and develop AI. These findings show how humans are directing the use of AI, altering current narratives on AI-led impacts on industry, jobs, and human creativity.
Copyright © by EnPress Publisher. All rights reserved.