Nationwide integration of AI into the contemporary art sector has taken place since government AI regulations in 2023 to promote AI use. China’s AI integration into industry is ‘ahead’ of other countries, meaning that other countries can learn from these creative professionals. Consequently, contemporary visual artists have devised arts-led sustainable AI solutions to overcome global AI concerns. They are now putting these solutions into practice to maintain their jobs, arts forms, and industry. This paper draws on 30 interviews with contemporary visual artists, and a survey with 118 professional artists from across China between 2023 and 2024. Findings show that 87% use AI and 76% say AI is useful and they will continue to use AI into the future. Findings show professionals have had time to find DIY, bottom-up solutions to AI concerns, including (1) building strong authorship practices, identity, and brand, (2) showing human creativity and inner thinking, (3) gaining a balanced independent position with AI. They want AI regulations to liberalise and promote AI use so they can freely experiment and develop AI. These findings show how humans are directing the use of AI, altering current narratives on AI-led impacts on industry, jobs, and human creativity.
Quantum dot can be seen as an amazing nanotechnological discovery, including inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge effects, and quantum confinement characters. To enhance valuable physical properties and potential prospects of graphene quantum dots, various high-performance nanocomposite nanostructures have been developed using polymeric matrices. In this concern, noteworthy combinations of graphene quantum dots have been reported for a number of thermoplastic polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique microstructure and technically reliable electrical/thermal conductivity, mechanical/heat strength, and countless other physical properties. Precisely speaking, thermoplastic polymer/graphene quantum dot nanocomposites have been reported in the literature for momentous applications in electromagnetic interference shielding, memory devices, florescent diodes, solar cells photocatalysts for environmental remediation, florescent sensors, antibacterial, and bioimaging. To the point, this review article offers an all inclusive and valuable literature compilation of thermoplastic polymer/graphene quantum dot nanocomposites (including design, property, and applied aspects) for field scientists/researchers to carry out future investigations on further novel designs and valued property-performance attributes.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
Nanoscale zero-valent iron (nZVI) is thought to be the most effective remediation material for contaminated soil, especially when it comes to heavy metal pollutants. In the current high-industrial and technologically advanced period, water pollution has emerged as one of the most significant causes for concern. In this instance, silica was coated with zero-valent iron nanoparticles at 650 and 800 ℃. Ferric iron with various counter-ions, nitrate (FN) and chloride (FC), and sodium borohydride as a reducing agent were used to create nanoscale zero-valent iron in an ethanol medium with nitrogen ambient conditions. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques were employed to describe the structures of the generated zero-valent iron nanoparticles. Further, we investigated the electrical properties and adsorption characteristics of dyes such as alizarin red in an aqueous medium. As a result, zero-valent nano iron (nZVI), a core-shell environmental functional material, has found extensive application in environmental cleanup. The knowledge in this work will be useful for nZVI-related future research and real-world applications.
Copyright © by EnPress Publisher. All rights reserved.