Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
This research presents a comprehensive model for enhancing the road network in Thailand to achieve high efficiency in transportation. The objective is to develop a systematic approach for categorizing roads that aligns with usage demands and responsible agencies. This alignment facilitates the creation of interconnected routes, which ensure clear responsibility demarcation and foster efficient budget allocation for road maintenance. The findings suggest that a well-structured road network, combined with advanced information and communication technology, can significantly enhance the economic competitiveness of Thailand. This model not only proposes a framework for effective road classification but also outlines strategic initiatives for leveraging technology to achieve transportation efficiency and safety.
In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
Realistic project scheduling and control are critical for running a profitable enterprise in the construction industry. Finance-based scheduling aims to produce more realistic schedules by considering both resource and cash constraints. Since the introduction of finance-based scheduling, its literature has evolved from a single-objective model to a multi-objective model and also from a single-project problem to a multi-project problem for a contractor. This study investigates the possibility of cooperation among contractors with concurrent projects to minimize financial costs. Contractors often do not use their entire credit and may be required to pay a penalty for the unused portions. Therefore, contractors are willing to share these unused portions to decrease their financing costs and consequently improve their overall profits. This study focuses on the partnering of two contractors in a joint finance-based scheduling where contractors are allowed to lend credit to or borrow credit from each other at an internal interest rate. We apply this approach to an illustrative example in which two concurrent projects have the potential for partnering. Results show that joint finance-based scheduling reduces the financing cost for both contractors and leads to additional overall profits. Our further analyses highlight the intricate dynamics impacting additional net profit, revealing optimal scenarios for cooperation in complex project networks.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Copyright © by EnPress Publisher. All rights reserved.