Road construction and maintenance are key interventions that support economic potential in the country. However, the deplorable state of some roads in Nigeria, and in Cross River and Akwa Ibom states draws research concerns. This paper seeks to examine the impact of the Niger Delta Development Commission Intervention on road construction and economic activities in Cross River and Akwa Ibom States, Nigeria. Using the Sustainable Development Framework, a survey research design was employed, gathering data from 400 respondents across both states. The chi-square statistical technique was used to test the hypothesis that the Niger Delta Development Commission Intervention has no significant impact on road construction in Akwa Ibom and Cross River States. The result of the data analysis showed the calculated value X2 = 1592 > 16.92. By this result, the null hypothesis was rejected (16.92) at 0.05 level of significance and 9 Degrees of Freedom, and the alternate was accepted. The study concludes that NDDC road projects have positively influenced economic activities and livelihoods in the states. However, it highlights the need for further improvements, particularly on the Calabar-Itu federal highway.
Background: According to the 2023 World Economic Forum report, the impact of Artificial Intelligence (AI) and automation on the job market was more significant than originally projected. Although 2018 research forecasted significant job losses balanced by job creation, current data indicates otherwise. Between 2023 and 2027, it is anticipated that 69 million new jobs will be created due to advancements in AI, however, this will be offset by the loss of 83 million jobs, leading to a net decrease of 14 million jobs worldwide. Roles related to AI, digitalization, and sustainability, such as AI specialists and renewable energy engineers are expected to grow, while those in clerical and administrative sectors are most at risk of decline. This shift underscores the need for reskilling and adapting to evolving fields, as nearly 44% of workers skills will face disruption by 2027. The demand for analytical thinking, technological literacy, and adaptability will grow as companies increasingly adopt frontier technologies. Objectives: (1) identify key variables influencing adaptability of college graduates in Indonesia, (2) quantify the strength of relationships between these variables to understand the combined effect on graduate adaptability. The research also aims to (3) develop theoretical and practical recommendations to strengthen ICIL policy and equip students with the relevant skills needed to thrive in an ever-changing job market. Methodology: The research focuses on predicting future employment trends, adaptability, and learning agility (LA), along with the implications for improving the Independent Campus Independent Learning (ICIL) policy. It focused on the significant unemployment rate among college graduates, along with the lack of research on the relationship between job change predictions, graduates’ adaptability, and the impact on graduates’ general well-being. The mixed-method strategy with quantitative analysis was used to conduct this research with data collected from 284 ICIL participants through online survey. The gathered data was evaluated using Structural Equation Modeling (SEM) with Lisrel version 10. Results: The result showed that job trend projections significantly influence responsiveness, which demonstrated a robust association between employment trend predictions and LA. Responsiveness significantly influenced learning agility which indicated no significant direct association between job trend projections and graduate adaptability. Conclusion: The research emphasized the need to consider adaptability as a concept with multiple dimensions. It proposed incorporating these factors into strategies for education and human resources development in order to better equip graduates for the demands of a constantly changing work market. Unique contribution: This research focused on adaptability as a multifaceted concept that consist of the ability to forecast job trends, be sensitive, and possess LA. It offered a deeper understanding of the relationships between these variables as discussed in the human resources literature. Technology, corporate culture, and training played a critical role in connecting employment trend prediction with the ability to respond effectively. Key recommendation: Institutions should implement a comprehensive approach to the development of human resources, with emphasis on fostering critical thinking, analytical abilities, and the practical application of information. By employing these tactics, higher education institutions may effectively equip graduates with both academic proficiency and the ability to adapt and thrive in quickly changing organizational environments, leading to the production of robust and versatile workers.
The article presents an answer to the current challenge about needs to form methodological approaches to the digital transformation of existing industrial enterprises (EIE). The paper develops a hypothesis that it is advisable to carry out the digital transformation of EIE based on considering it as a complex technical system using model-based system engineering (MBSE). The practical methodology based on MBSE for EIE digital representation creation are presented. It is demonstrated how different system models of EIE is created from a set of entities of the MBSE approach: requirements—unctions—components and corresponding matrices of interconnections. Also the principles and composition of tasks for system architectures creation of EIE digital representation are developed. The practical application of proposed methodology is illustrated by the example of an existing gas distribution station.
The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
Copyright © by EnPress Publisher. All rights reserved.